scholarly journals Mechanical and Dielectric Properties of Two Types of Si3N4 Fibers Annealed at Elevated Temperatures

Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1498 ◽  
Author(s):  
Jie Zhou ◽  
Fang Ye ◽  
Xuefeng Cui ◽  
Laifei Cheng ◽  
Jianping Li ◽  
...  

The mechanical and dielectric properties of two types of amorphous silicon nitride (Si3N4) fibers prior to and following annealing at 800 °C were studied. The tensile strengths of the Si3N4 fiber bundles were measured using unidirectional tensile experimentation at room temperature, whereas the permittivity values were measured at 8.2–12.4 GHz using the waveguide method. The results demonstrated that the tensile strength and dielectric properties of Si3N4 fibers were correlated to the corresponding composition, microstructure, and intrinsic performance of electrical resistance. The Si3N4 fibers with a lower content of amorphous SiNxOy presented an improved thermal stability, a higher tensile strength, a higher conductivity, and a significantly stable wave-transparent property. These were mainly attributed to the highly pure composition and decomposition of less amorphous SiNxOy.

2010 ◽  
Vol 654-656 ◽  
pp. 647-650
Author(s):  
Joong Hwan Jun ◽  
Min Ha Lee

Thermal stability of  grains and tensile ductilities at room and elevated temperatures were investigated and compared for Mg-3%Zn-0.4%Zr and Mg-3%Zn-0.4%Zr-1%Bi alloys in hot-rolled state. The Bi-added alloy showed slightly finer-grained microstructure with enhanced thermal stability, which is closely associated with fine Mg-Bi compounds acting as obstacles for the migration of grain boundaries. The Mg-3%Zn-0.4%Zr-1%Bi alloy exhibited better tensile strength at room temperature and tensile ductilities at elevated temperature. Finer and more homogeneous grain structure with higher thermal stability would be responsible for the enhanced tensile properties in the Bi-added alloy.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 31
Author(s):  
Hongxin Liao ◽  
Taekyung Lee ◽  
Jiangfeng Song ◽  
Jonghyun Kim ◽  
Fusheng Pan

The microstructures and mechanical properties of the Mg88.5Zn5Y6.5-XREX (RE = Yb and Ce, X = 0, 1.5, 3.0, and 4.5) (wt.%) alloys were investigated in the present study. Mg88.5Zn5Y6.5 is composed of three phases, namely, α-Mg, long-period stacking ordered (LPSO) phases, and intermetallic compounds. The content of the LPSO phases decreased with the addition of Ce and Yb, and no LPSO phases were detected in Mg88.5Zn5Y2.0Yb4.5. The alloys containing the LPSO phases possessed a stratified microstructure and exhibited excellent mechanical properties. Mg88.5Zn5Y5.0Ce1.5 exhibited the highest creep resistance and mechanical strength at both room temperature and 200 °C, owing to its suitable microstructure and high thermal stability. The yield strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature was 358 MPa. The ultimate tensile strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature and 200 °C was 453 MPa and 360 MPa, respectively.


2017 ◽  
Vol 71 (12) ◽  
pp. 2626-2631 ◽  
Author(s):  
Jeffrey L. Wheeler ◽  
McKinley Pugh ◽  
S. Jake Atkins ◽  
Jason M. Porter

In this work, the thermal stability of the room temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium ethylsulfate ([EMIM][EtSO4]) is investigated using infrared (IR) spectroscopy. Quantitative IR absorption spectral data are measured for heated [EMIM][EtSO4]. Spectra have been collected between 25 ℃ and 100 ℃ using a heated optical cell. Multiple samples and cell pathlengths are used to determine quantitative values for the molar absorptivity of [EMIM][EtSO4]. These results are compared to previous computational models of the ion pair. These quantitative spectra are used to measure the rate of thermal decomposition of [EMIM][EtSO4] at elevated temperatures. The spectroscopic measurements of the rate of decomposition show that thermogravimetric methods overestimate the thermal stability of [EMIM][EtSO4].


1989 ◽  
Vol 173 ◽  
Author(s):  
Michiya Otani ◽  
Sugio Otani

ABSTRACTThe stability of the magnetic properties of dehydrogenated triaryl-methane resins was investigated both at room temperature and at elevated temperatures. A magnetic property different from that reported in a previous paper was found in the course of studying the reproducibility of synthesis. This new property was examined through a mechanical response of the resins to a set of permanent magnets.


2015 ◽  
Vol 662 ◽  
pp. 19-22
Author(s):  
Kornel Csach ◽  
Jozef Miškuf ◽  
Alena Juríková ◽  
Maria Hurakova ◽  
Václav Ocelík ◽  
...  

Nanoindentation and thermomechanical experiments on three types of metallic glasses with different glass forming ability were carried out. The nanoindentation behaviour at room temperature was associated with the creep at elevated temperatures. Different discontinuity populations and their shape observed on the nanoindentation loading curves were compared with morphology of plastic deformed indent regions. The influence of the differences in thermal stability of studied alloys on the nanoindentation in these alloys were studied as well.


1953 ◽  
Vol 20 (2) ◽  
pp. 289-294
Author(s):  
Leon Green

Abstract Experiments on the compression of graphite cylinders at elevated temperatures are described. It is found that the short-time compressive strength increases with temperature in the range from room temperature to 2000 C, a variation which is consistent with the previously reported behavior of the tensile strength. Photographs of typical modes of deformation and their corresponding stress-strain curves are presented, but a limited degree of temperature control renders the curves semiquantitative in nature. The large, mutually opposing influences of temperature and strain rate are illustrated by photographs of typical failures, and stress-relaxation curves manifest the plasticity of graphite at high temperatures.


1947 ◽  
Vol 20 (2) ◽  
pp. 515-524
Author(s):  
A. M. Borders ◽  
R. D. Juve

Abstract For several years work has been carried on here to evaluate a large number of diene polymers and copolymers as rubberlike materials. The writers have observed that changes in polymer composition which result in improved tensile strength and crack-growth resistance of the vulcanizate cause an increase in low temperature stiffness and a rise in brittle point. This generalization seems to apply to tensile values measured at elevated temperatures as well as to those at room temperature. For example, a butadiene copolymer of dichlorostyrene can be made which, as a tread type of vulcanizate, exhibits a tensile strength of over 1500 pounds per square inch at 93° C, in comparison with 800 to 1000 pounds per square inch for GR-S in the same test tread formula at the same temperature. The brittle point of the butadiene-dichlorostyrene rubber, however, is −35° C or higher. GR-S treads in the same test have brittle points between − 55° and −60° C. Probably of greater practical importance is the fact that the vulcanizate with the higher brittle point is stiffer at temperatures well above the brittle point. The purpose of this investigation was to determine to what extent the maximum tensile strength of tread stocks of several synthetic rubbers varies with the temperature difference between the brittle point and the tensile testing temperature of each rubber. These data can then be used to judge the validity and extent of the general observation that changes in copolymer composition which increase strength also raise the brittle point.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1648
Author(s):  
Guo-Jun Liu ◽  
Yan-Hua Sun ◽  
Nan Xia ◽  
Xiao-Fang Guan

The effects of small amounts of Ce-rich misch metal (Mm: 0.5, 1.0 and 2.0 wt.%) addition on the microstructure and tensile properties of as-cast Mg-7Al-3Sn-1Zn wt.% (ATZ731) alloy have been investigated. The addition of Mm restricts the formation of the Mg17Al12 phase but greatly promotes the Al4Mm phase. The proper Mm addition enhances the strength and ductility of ATZ731 alloys at both room temperature (RT) and 175 °C. ATZ731 alloys with 1.0 wt.% Mm addition exhibit an advantageous combination strength and ductility, with the ultimate tensile strength (UTS), 0.2% yield strength (YS) and elongation to failure (Ef) at 175 °C of ~148 MPa, ~102 MPa and ~28%, improved by ~14.7%, ~24.3% and ~53.8%, respectively, compared to those of ATZ731 alloy. This enhancement is primarily owing to the refined microstructures and the high thermal stability of Al4Mm at the elevated temperature in contrast with that of the Mg17Al12 phase. The fracture modes are also discussed.


JOM ◽  
2021 ◽  
Author(s):  
Jiao Fang ◽  
Xixi Dong ◽  
Shouxun Ji

AbstractThe application of aluminum alloys at elevated temperatures has been attractive for decades, and Al-Ni-based alloys have recently been recognized as potential candidates. The effect of Mn on Al-4Ni alloy has been investigated in this work. Addition of Mn transformed the eutectics from Al3Ni/α-Al to Al9(Ni,Mn)2/α-Al phases. Mn also improved the tensile strength at both 25°C and 250°C. The yield strength at 25°C increased from 48 MPa to 92 MPa with 1.87% Mn and then to 117 MPa with 3.77% Mn. At 250°C, the yield strength increased from 35 MPa to 82 MPa with 1.87% Mn and then to 101 MPa with 3.77% Mn. The alloys with Mn also showed less strength loss than Al-4Ni alloy at 250°C. The eutectic Al9(Ni,Mn)2 phase showed good thermal stability. No coarsening was observed after 2000 h at 250°C.


1951 ◽  
Vol 18 (4) ◽  
pp. 345-348
Author(s):  
Leon Green

Abstract The fatigue properties of grade AUF extruded polycrystalline graphite were investigated at ambient and elevated temperatures. Specimens cut parallel to the axis of extrusion were stressed in reversed bending at room temperature and at 3550 F. The endurance limit of this graphite was found to increase from 2500 psi at room temperature to about 4400 psi at 3550 F. The increase in endurance limit is correlative with the increase in short-time tensile strength with temperature observed in earlier studies of graphite.


Sign in / Sign up

Export Citation Format

Share Document