scholarly journals Hydration and Microstructure of Cement Pastes with Calcined Hwangtoh Clay

Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 458 ◽  
Author(s):  
Run-Sheng Lin ◽  
Xiao-Yong Wang ◽  
Han-Seung Lee ◽  
Hyeong-Kyu Cho

Calcined Hwangtoh (HT) clay is a very promising supplementary cementitious material (SCM). In this work, the development of the mechanical properties and microstructures of HT-blended cement paste was studied after substituting the binder with HT powder calcined at 800 °C. The water-to-binder (w/b) ratios of the paste used were 0.2 and 0.5, and the quantities of HT powder added to the mixture were 0, 10, and 20%. The compressive strength test indicates that the addition of the HT powder increases the compressive strength of the paste after seven days of curing, and the highest compressive strength is obtained with the 10% HT substitution, regardless of whether the w/b ratio is 0.5 or 0.2. X-ray fluorescence (XRF), X-ray diffraction (XRD), inductively coupled plasma mass spectrometry (ICP-MS), isothermal calorimetry, thermogravimetric analysis (TGA), and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) analysis show that the HT powder not only has a physical effect (i.e., nucleation effect and dilution effect) on cement hydration but also has a chemical effect (i.e., chemical reaction of HT). The results of scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP) analysis show that the paste has more ettringite during the early stage, and the microstructure is refined after the addition of the HT powder. In addition, the relationships between chemically bound water, hydration heat, and compressive strength are presented.

2018 ◽  
Vol 10 (10) ◽  
pp. 3369 ◽  
Author(s):  
Run-Sheng Lin ◽  
Xiao-Yong Wang ◽  
Gui-Yu Zhang

This paper compares the effects of the water-to-binder (w/b) ratio and quartz contents on the properties of cement–quartz paste. The w/b ratios of the paste mixtures specimens are 0.5 and 0.2, and the quartz powder contents are 0, 10, and 20%. At the age of 1, 3, 7, and 28 days, compressive strength test, X-ray fluorescence (XRF) spectroscopy, X-ray diffraction (XRD), mercury intrusion porosimetry (MIP), scanning electron microscopy (SEM), isothermal calorimetry, and thermogravimetric (TG) analysis were performed. The experimental results show that the quartz powder mainly has the dilution effect and crystal nucleation effect on cement hydration, and the addition of quartz powder does not change the type of hydration product. The effect of quartz powder on cement hydration is closely related to the w/b ratio. In the case of a low w/b ratio of 0.2, the addition of quartz powder did not impair the compressive strength of paste. For different w/b ratios (0.5 and 0.2) and various quartz powder contents (0, 10, and 20%) at different ages (1, 3, 7, and 28 days), there is a uniform linear relationship between strength and porosity. Similarly, there is a uniform linear relationship between chemically bound water and calcium hydroxide, between heat of hydration and compressive strength, and between chemically bound water and compressive strength. At the same time, the effect of the partial replacement of cement by quartz powder on sustainability is considered in this paper.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4248
Author(s):  
Xingxing Li ◽  
Ying Ma ◽  
Xiaodong Shen ◽  
Ya Zhong ◽  
Yuwei Li

The utilization of coral waste is an economical way of using concrete in coastal and offshore constructions. Coral waste with more than 96% CaCO3 can be ground to fines and combined with supplementary cementitious materials (SCMs) such as fly ash, silica fume, granulated blast furnace slag in replacing Portland cement to promote the properties of cement concrete. The effects of coral sand powder (CSP) compared to limestone powder (LSP) blended with SCMs on hydration and microstructure of mortar were investigated. The result shows CSP has higher activity than LSP when participating in the chemical reaction. The chemical effect among CSP, SCMs, and ordinary Portland cement (OPC) results in the appearance of the third hydration peak, facilitating the production of carboaluminate. CSP-SCMs mortar has smaller interconnected pores on account of the porous character of CSP as well as the filler and chemical effect. The dilution effect of CSP leads to the reduction of compressive strength of OPC-CSP and OPC-CSP-SCMs mortars. The synergic effects of CSP with slag and silica fume facilitate the development of compressive strength and lead to a compacted isolation and transfer zone (ITZ) in mortar.


2020 ◽  
Vol 330 ◽  
pp. 01047
Author(s):  
Toufik Boubekeur ◽  
Bensaid Boulekbache ◽  
Mohamed Salhi ◽  
Karim Ezziane ◽  
EL.Hadj Kadri

This paper presents the experimental results of a wide research program, tending to determine the hydration mechanism, mechanical properties and the durability performance of ternary cement containing limestone powder and slag. The limestone powder increase the hydration at early ages inducing a high strength at, but it can reduce the later strength due to the dilution effect. On the other hands, Slag (S) contributes to increase the compressive strength at later ages. Hence, at medium blended cement (OPC-LP-S) with better performance could be produced. Results show at later age the Slag is very effective in producing ternary blended cements with similar on higher compressive strength than the ordinary Portland cement at 28 and 90 days. For durability, the incorporation of the slag into the cement containing limestone powder improves remarkably resistance to attack by acids and sulfates and it has been found that the durability of the cements never depends on the mechanical strength.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4863
Author(s):  
Won Jung Cho ◽  
Min Jae Kim ◽  
Ji Seok Kim

Pore structure development in Portland cement, fly ash, or/and ferronickel slag (FNS) was investigated using mercury intrusion porosimetry and X-ray CT tomography. The progress of hydration was observed using X-ray diffraction (XRD) analysis and compressive strength while durability of concrete was monitored by chloride penetration resistance and chloride profiles. Mercury intrusion porosimetry (MIP) results suggested that the blended cement had a higher porosity while lower critical pore size. The major reason to this increased porosity was the formation of meso and micro pores compared to ordinary Portland cement (OPC). In terms of chloride transport, replaced cement, especially ternary-blended cement had higher resistance to chloride transport and exhibited slightly lower development of compressive strength. X-ray CT tomography shows that the influence of pore structure of ternary-blended cement on the ionic transport was strongly related to the pore connectivity of cement matrix.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2214
Author(s):  
Sebastian Scherb ◽  
Mathias Köberl ◽  
Nancy Beuntner ◽  
Karl-Christian Thienel ◽  
Jürgen Neubauer

Systematic investigation of filtrates and filter residues resulting from a 24 h treatment of metakaolin in different alkaline solutions were performed. On filtered metakaolin particles, inductively coupled plasma-optical emission spectrometry (ICP-OES) measurements reveal an enrichment of iron and titanium, which suggests an inhomogeneous distribution of these cations. Since the SiO2/Al2O3 ratio remains constant in all filter residues examined, the dissolution of the Si and Al monomers is congruent. Structural differences, identified by attenuated total reflection–Fourier transform infrared spectroscopy (ATR-FTIR) as a consequence of alkali uptake, influence the X-ray scattering contribution of metakaolin, and thus quantifications with the partial or no known crystal structure (PONKCS) method. This leads to deviations between the degree of reaction calculated from Si and Al solubility from filtrate and that quantified by quantitative powder X-ray diffraction (QPXRD) using the filter residue. Nevertheless, the described changes do not cause a shift in the X-ray amorphous hump in case of congruent dissolution, and thus allow the quantification of the metakaolin before and after dissolution with the same hkl-phase model.


Minerals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 910
Author(s):  
Sabina Dolenec ◽  
Katarina Šter ◽  
Maruša Borštnar ◽  
Klara Nagode ◽  
Andrej Ipavec ◽  
...  

This study investigated the influence of different cooling regimes on the microstructure and consequent reactivity of belite-sulfoaluminate clinkers. The cement clinkers were synthesized by incorporating secondary raw materials, such as titanogypsum and bottom ash, to the natural raw materials. Clinker phases were determined by Rietveld quantitative phase analysis, while the distribution morphology and the incorporation of substitute ions in the phases were characterized by scanning electron microscopy using energy-dispersive X-ray spectroscopy (SEM/EDS). Clinker reactivity was studied using isothermal calorimetry and was additionally investigated through compressive strength, which was determined for the cement prepared from the synthesized clinkers. X-ray diffraction analysis showed that, as well as the three main phases (belite, calcium sulfoaluminate, and ferrite), the clinkers contained additional minor phases (mayenite, gehlenite, arkanite, periclase, and perovskite), the ratios of which varied according to the cooling regime utilized. Microscopic observations indicated that the cooling regime also influenced the crystal size and morphology of the main phases, which consequently affected clinker reactivity. Furthermore, a smaller amount of substitute elements was incorporated in the main phases when cooling was slowed. Results showed that, in comparison to clinkers cooled at slower rates, air quenched clinkers reacted faster and exhibited a higher compressive strength at 7 days.


2018 ◽  
Vol 232 (9-11) ◽  
pp. 1353-1368 ◽  
Author(s):  
Nathalie Pytlik ◽  
Daniel Butscher ◽  
Susanne Machill ◽  
Eike Brunner

Abstract Biosynthesis by diatoms provides a green approach for nanoparticle (NP) production. However, reproducible and homogeneous shapes are essential for their application. To improve these characteristics during biosynthesis, the underlying synthesis mechanisms as well as involved substances need to be understood. The first essential step for suitable analyses is the purification of Au-silica-nanocomposites from organic biomass. Succesfully cleaned nanocomposites could, for example, be useful as catalysts. In combination with the biosynthesized NPs, this material presents a “green” catalyst and could contribute to the currently thriving green nanochemistry. In this work, we compare different purification agents with respect to their ability to purify cells of the diatom Stephanopyxis turris without separating the biosynthesized Au-silica-nanocomposites from the diatom cell walls. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) are used to localize and identify Au-silica-nanocomposites around the cells. The amount of remaining organic compounds on the purified cell is detected by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Furthermore, inductively coupled plasma optical emission spectrometry (ICP-OES) is used to track the “gold path” during cell growth and the different purifications steps.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Han-Seung Lee ◽  
Hyeong-Kyu Cho ◽  
Xiao-Yong Wang

This paper presents experimental investigations and theoretical modeling of the hydration reaction of nanosilica blended concrete with different water-to-binder ratios and different nanosilica replacement ratios. The developments of chemically bound water contents, calcium hydroxide contents, and compressive strength of Portland cement control specimens and nanosilica blended specimens were measured at different ages: 1 day, 3 days, 7 days, 14 days, and 28 days. Due to the pozzolanic reaction of nanosilica, the contents of calcium hydroxide in nanosilica blended pastes are considerably lower than those in the control specimens. Compared with the control specimens, the extent of compressive strength enhancement in the nanosilica blended specimens is much higher at early ages. Additionally, a blended cement hydration model that considers both the hydration reaction of cement and the pozzolanic reaction of nanosilica is proposed. The properties of nanosilica blended concrete during hardening were evaluated using the degree of hydration of cement and the reaction degree of nanosilica. The calculated chemically bound water contents, calcium hydroxide contents, and compressive strength were generally consistent with the experimental results.


2019 ◽  
Vol 54 (18) ◽  
pp. 2379-2387 ◽  
Author(s):  
Baomin Wang ◽  
Bo Pang

Multiwall carbon nanotubes with extraordinary mechanical properties have been widely used as effective nano-reinforcer of cement-based composites. In this research, multiwall carbon nanotubes were dispersed uniformly in aqueous solution using N,N-dimethylformamide as dispersant with ultrasonication. The structure and micromorphology of multiwall carbon nanotubes were characterized via X-ray photoelectron spectroscopy and transmission electron microscopy. The effect of N,N-dimethylformamide on multiwall carbon nanotubes dispersion was better than that of previous dispersants. The multiwall carbon nanotubes/cement composites with different multiwall carbon nanotubes contents were prepared and the mechanical performances of multiwall carbon nanotubes/cement composites were researched. Results showed that the flexural strength growth rate of multiwall carbon nanotubes/cement composites was 21.7% and the compressive strength growth rate of the multiwall carbon nanotubes/cement composites was 2.9% incorporating with 0.04 wt% multiwall carbon nanotubes at 28 days. The ratio of compressive strength to flexural strength of decline rate of multiwall carbon nanotubes/cement composites was 15.9% with 0.04 wt% multiwall carbon nanotubes at 28 days. The isothermal calorimetry (TAM Air) showed that multiwall carbon nanotubes could accelerate the hydration reaction. The X-ray diffraction and thermal gravity analysis (TG/DTG) suggested that multiwall carbon nanotubes could improve the hydration process and increase the number of hydration products. The mercury intrusion porosimetry revealed the porosity of multiwall carbon nanotubes/cement composites was decreased. There is an effect of multiwall carbon nanotubes on inhibiting the extension of cracks and promoting the degree of compactibility of the cement-based composites. The micromorphology of multiwall carbon nanotubes/cement composites was observed through scanning electron microscope.


LITOSFERA ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 683-698
Author(s):  
E. S. Karaseva ◽  
A. Yu. Kissin ◽  
V. V. Murzin

Research subject. The results of studying the geology and mineralogy of the Poldnevskoye deposit of demantoid are presented. Material and methods. The factual material was collected during feld research. Demantoid samples were pro vided by mine owners. Rock and vein minerals were studied in hand specimens, polished specimens and thin sections; the chemical composition was determined by X-ray fluorescence spectroscopy, scanning electron microscopy, electron probe X-ray spectral microanalysis, inductively coupled plasma mass spectrometry with laser sampling (LA-ICP-MS).Results. The Korkodinsky ultrabasic massif containing the deposit experienced strong decompression and syndecompression mineral formation during the ascent. At an early stage, veins of clinopyroxenite formed in dunite, which also experienced decompression cracking. Then the rocks underwent antigoritization and the appearance of vein antigorite, which was replaced by veins of clinochrysotile (+ magnetite ± carbonate ± demantoid). This was followed by the formation of lizardite (+ magnetite ± carbonate ± demantoid), which also developed along the earlier vein serpentines. Demantoid is represented by rounded grains and rounded grain aggregates with the signs of growth under the conditions of allround extension. The predominant color is brownish-green, yellow-green, rarely green and dark green. Green and dark green demantoids contain Cr2O3 0.52–2.3 wt %. In the central part of some grains and demantoid aggregates, a brown color is observed, which binds to TiO2, the content of which reaches 1 wt %. The demantoids of the Poldnevskoye deposit bear typomorphic features of the Ural-type demantoids (inclusions of the “horse’s tail” type). The distribution of demantoid is nested. The length of the veins with demantoid is frst meters. Their pillar-like shape is assumed. Conclusion.Demantoids from nests in serpentinized massive or brecciform dunites are more intact; demantoid nests in strongly serpentinized rocks were tectonic crushed and contain little gemstone.


Sign in / Sign up

Export Citation Format

Share Document