scholarly journals Mix Design and Mechanical Properties of High-Performance Pervious Concrete

Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2577 ◽  
Author(s):  
Chao-Wei Tang ◽  
Chiu-Kuei Cheng ◽  
Ching-Yuan Tsai

The mechanical properties of traditional pervious concrete are insufficient, which limits its application. In view of the imperfections of traditional permeable concrete in mechanics, this paper aimed to find a suitable material composition that can be used as a feasible mix design of high-performance pervious concrete, to essentially improve its mechanical properties. Based on the view that concrete is a two-phase material, in order to understand the rheological properties of the matrix, it was subjected to a rheological test, and then the filler aggregate was uniformly incorporated into the aforementioned matrix to further explore the composition and properties of the resulting pervious concrete. For the matrix, the orthogonal array employed was L16(45), which consisted of five factors, each with four levels. Base on the fluidity and compressive strength of the tested matrix, three groups of suitable matrixes mix proportions were selected to serve as the matrix type for pervious concrete mix proportion design. Then, an orthogonal array L9(34), which consisted of four controllable three-level factors, was adopted in the pervious concrete. The parameters investigated included the coarse aggregate size, fine aggregate content, matrix type, and aggregate-to-binder ratio. The test results demonstrate that the key factors affecting the compressive strength of the matrix and the pervious concrete were closely related to the cementitious material. In the matrix, the proportion of the cementitious material was the most important factor, while in the pervious concrete, the type of matrix was the most important factor.

2022 ◽  
Vol 12 (1) ◽  
pp. 524
Author(s):  
Chao-Wei Tang ◽  
Chiu-Kuei Cheng ◽  
Lee-Woen Ean

The main purpose of this study was to investigate the mix design and performance of fiber-reinforced pervious concrete using lightweight coarse aggregates instead of ordinary coarse aggregates. There were two main stages in the relevant testing work. First, the properties of the matrix were tested with a rheological test and then different amounts of lightweight coarse aggregate and fine aggregate were added to the matrix to measure the properties of the obtained lightweight pervious concrete (LPC). In order to greatly reduce the experimental workload, the Taguchi experimental design method was adopted. An orthogonal array L9(34) was used, which was composed of four controllable three-level factors. There were four test parameters in this study, which were the lightweight coarse aggregate size, ordinary fine aggregate content, matrix type, and aggregate/binder ratio. The research results confirmed that the use of suitable materials and the optimal mix proportions were the key factors for improving the mechanical properties of the LPC. Due to the use of silica fume, ultrafine silica powder, and polypropylene fibers, the 28-day compressive strength, 28-day flexural strength, and 28-day split tensile strength of the LPC specimens prepared in this study were 4.80–7.78, 1.19–1.86, and 0.78–1.11 MPa, respectively. On the whole, the mechanical properties of the prepared LPC specimens were better than those of the LPC with general composition.


2012 ◽  
Vol 19 (3) ◽  
pp. 237-245 ◽  
Author(s):  
Wenhua Zhang ◽  
Yunsheng Zhang ◽  
Guorong Zhang

AbstractA new type of construction material named ultra-high performance cementitious composite (UHPCC) was developed in order to reduce the production cost and energy consumption of reactive powder concrete (RPC). Six different mixture proportions of UHPCC were designed, and their properties, including workability (slump test), static mechanical properties (compressive strength and flexure strength), and dynamic mechanical properties (dynamic compressive strength, toughness and fracture pattern), were investigated. Finally, the microstructure of the UHPCC was studied. The experiment result indicate that the compressive and flexural strength of UHPCC can reach 150–200 MPa and 15–50 MPa under standard curing conditions, respectively, which is close to RPC200. Besides, the steel fiber has significant improvement on mechanical properties of UHPCC. The dynamic impact test results show that UHPCC has obvious strain rate effects. Besides, UHPCC exhibits excellent properties to resist dynamic impact. The microstructure investigation showed that UHPCC has dense microstructures and very strong bonds of the interfacial transition zone between cementitious paste and fine aggregate steel fiber.


2013 ◽  
Vol 275-277 ◽  
pp. 2064-2068 ◽  
Author(s):  
Xiang Gao ◽  
Qing Hua Li ◽  
Shi Lang Xu

High performance nano-binder cementitious composites (HPNCC) are ultra-ductile fiber reinforced cementitious composites with special matrix. The compressive strength and flexural properties of HPNCC containing nano-SiO2 particles were investigated at age of 3d, 7d, 14d and 28d. According to the results, HPNCC exhibited excellent mechanical properties in the test. The compressive strength, flexural strength and first crack strain of HPNCC were all increased obviously at early age except the ultimate strain. In the flexural test, both crack extension width and the number of fine cracks decrease along with the curing age. However, the average crack spacing has no remarkable changes. Nano-SiO2 particles in HPNCC acted as ultra-fine fillers and catalyzers to strengthen the interfacial bond between the matrix and PVA fiber which improved the mechanical properties and would make HPNCC be widely used in the engineering.


2022 ◽  
Vol 961 (1) ◽  
pp. 012054
Author(s):  
Abdulrasool Thamer Abdulrasool ◽  
Safaa S. Mohammed ◽  
Noor R. Kadhim ◽  
Yasir N. Kadhim

Abstract One of the most important elements in the development of compressive strength is concrete curing, and a large temperature differential during curing may decrease strength. This exudation is caused by microcracks in the concrete caused by the continuous temperature fluctuation. By minimizing autogenous shrinkage, internal curing has become popular for reducing the danger of early-age cracking in high-performance concrete (HPC). The efficacy of internal wet curing provided by fine Attapulgite aggregate is investigated in this research. On three different HPCs, both with and without internal curing materials, the development of observed mechanical properties is investigated. Two different amounts of normal weight fine aggregate were replaced with attapulgite fine aggregates. Internal cure has been found to benefit from attapulgite fine aggregates. It has been found that adding 20% Attapulgite fine aggregates to HPC enhances the material’s characteristics, resulting in low internal stress and a significant increase in compressive strength. It should be noted that, unlike certain conventional lightweight aggregates, the different amounts of Attapulgite fine aggregates added at various ages have shown no decrease in compressive strength.


Author(s):  
Ariful Hasnat ◽  
Nader Ghafoori

AbstractThis study aimed to determine the abrasion resistance of ultra-high-performance concretes (UHPCs) for railway sleepers. Test samples were made with different cementitious material combinations and varying steel fiber contents and shapes, using conventional fine aggregate. A total of 25 UHPCs and two high-strength concretes (HSCs) were selected to evaluate their depth of wear and bulk properties. The results of the coefficient of variation (CV), relative gain in abrasion, and abrasion index of the studied UHPCs were also obtained and discussed. Furthermore, a comparison was made on the resistance to wear of the selected UHPCs with those of the HSCs typically used for prestressed concrete sleepers. The outcomes of this study revealed that UHPCs displayed excellent resistance against abrasion, well above that of HSCs. Amongst the utilized cementitious material combinations, UHPCs made with silica fume as a partial replacement of cement performed best against abrasion, whereas mixtures containing fly ash showed the highest depth of wear. The addition of steel fibers had a more positive influence on the abrasion resistance than it did on compressive strength of the studied UHPCs.


2007 ◽  
Vol 330-332 ◽  
pp. 907-910
Author(s):  
Fa Ming Zhang ◽  
Jiang Chang ◽  
Jian Xi Lu ◽  
Kai Li Lin

Attempt to increase the mechanical properties of porous bioceramics, a dense/porous structured β-TCP bioceramics that mimic the characteristics of nature bone were fabricated. Experimental results show that the dense/porous structured β-TCP bioceramics demonstrated excellent mechanical properties with compressive strength up to 74 MPa and elastic modulus up to 960 MPa, which could be tailored by the dense/porous cross-sectional area ratio obeying the rule of exponential growth. The interface between the dense and porous bioceramics is connected compactly and tightly with some micropores distributed in the matrix of both porous and dense counterparts. The dense/porous structure of β-TCP bioceramics may provide an effective way to increase the mechanical properties of porous bioceramics for bone regeneration at weight bearing sites.


Materials ◽  
2004 ◽  
Author(s):  
Hiroyuki Hamada ◽  
Asami Nakai ◽  
Kazuya Eto ◽  
Kenichi Sugimoto

For the purpose of more safety boats, the large thickness of outer plates is required to increase flexural stiffness, strength and impact properties. Some problems in mechanical properties are generated by increasing in thickness because the effect of interlaminar shearing of Thick-composites on whole mechanical properties is greater than that of thin-composites. We have investigated the matrix hybrid composite with two kinds of unsaturated polyester, one was hard type resin with low toughness and the other was flexible type resin with low modulus and high toughness. In this study, matrix hybrid composite was focused and applied to Thick-composites. First, the flexural properties were investigated and the micro fracture progress was precisely observed with in-situ observation using replica method. Then, impact properties of the Thick-composites were examined and the availability of matrix hybrid composite was investigated. It was concluded that the matrix hybrid composite achieved high performance in both static and impact load.


Author(s):  
S C Sharma

A well-consolidated composite of Al alloy 6061 reinforced with 4, 8 and 12 wt% garnet was prepared by a liquid metallurgy technique, the composite was heat treated for different ageing durations (T6 treatment), and its mechanical properties were determined by destructive testing. The results of the study indicated that, as the garnet particle content in the composites increased, there were marked increases in the ultimate tensile strength, compressive strength and hardness but there was a decrease in the ductility. There was an improvement in the tensile strength, compressive strength, and hardness with ageing due to precipitation. Precipitation in Al alloy 6061, with and without garnet particulate reinforcement, was studied using transmission electron microscopy. The fracture behaviour of the composites was altered significantly by the presence of garnet particles and the crack propagation through the matrix, and the reinforcing particle clusters resulted in final fracture.


Author(s):  
Atif Jawed

Abstract: Pervious concrete is a special type of concrete, which consists of cement, coarse aggregates, water and if required and other cementations materials. As there are no fine aggregates used in the concrete matrix, the void content is more which allows the water to flow through its bodyThe main aim of this project was to improve the compressive strength characteristics of pervious concrete. But it can be noted that with increase in compressive strength the void ratio decreases. Hence, the improvement of strength should not affect the porosity property because it is the property which serves its purpose. In this investigation work the compressive strength of pervious concrete is increased by a maximum of 18.26% for 28 days when 8% fine aggregates were added to standard pervious concrete Keywords: W/C ratio, pervious Concrete, sugarcane bagasse’s ash, rice husk ash compressive strength, fine aggregates


2011 ◽  
Vol 57 (4) ◽  
pp. 357-371 ◽  
Author(s):  
S. Gopinath ◽  
A. Ramachandra Murthy ◽  
D. Ramya ◽  
Nagesh R. Iyer

Abstract This paper presents the details of optimized mix design for normal strength and high performance concrete using particle packing method. A critical review of mix design methods have been carried out for normal strength concrete using American Concrete Institute (ACI) and Bureau of Indian Standards (BIS) methods highlighting the similarities and differences towards attaining a particular design compressive strength. Mix design for M30 and M40 grades of concrete have been carried out using ACI, BIS and particle packing methods. Optimization of concrete mix has been carried out by means of particle packing method using EMMA software, which employs modified Anderson curve to adjust the main proportions. Compressive strength is evaluated for the adjusted proportions and it is observed that the mixes designed by particle packing method estimates compressive strength closer to design compressive strength. Further, particle packing method has been employed to optimize the ingredients of high performance concrete and experiments have been carried out to check the design adequacy of the desired concrete compressive strength.


Sign in / Sign up

Export Citation Format

Share Document