scholarly journals Three-Dimensional Evaluation on Accuracy of Conventional and Milled Gypsum Models and 3D Printed Photopolymer Models

Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3499 ◽  
Author(s):  
Jae-Won Choi ◽  
Jong-Ju Ahn ◽  
Keunbada Son ◽  
Jung-Bo Huh

The aim of this study was to evaluate the accuracy of dental models fabricated by conventional, milling, and three-dimensional (3D) printing methods. A reference model with inlay, single crown, and three-unit fixed dental prostheses (FDP) preparations was prepared. Conventional gypsum models (CON) were manufactured from the conventional method. Digital impressions were obtained by intraoral scanner, which were converted into physical models such as milled gypsum models (MIL), stereolithography (SLA), and digital light processing (DLP) 3D printed photopolymer models (S3P and D3P). Models were extracted as standard triangulated language (STL) data by reference scanner. All STL data were superimposed by 3D analysis software and quantitative and qualitative analysis was performed using root mean square (RMS) values and color difference map. Statistical analyses were performed using the Kruskal–Wallis test and Mann–Whitney U test with Bonferroni’s correction. For full arch, the RMS value of trueness and precision in CON was significantly smaller than in the other groups (p < 0.05/6 = 0.008), and there was no significant difference between S3P and D3P (p > 0.05/6 = 0.008). On the other hand, the RMS value of trueness in CON was significantly smaller than in the other groups for all prepared teeth (p < 0.05/6 = 0.008), and there was no significant difference between MIL and S3P (p > 0.05/6 = 0.008). In conclusion, conventional gypsum models showed better accuracy than digitally milled and 3D printed models.

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1550
Author(s):  
Soo-Yeon Yoo ◽  
Seong-Kyun Kim ◽  
Seong-Joo Heo ◽  
Jai-Young Koak ◽  
Joung-Gyu Kim

Previous studies on accuracy of three-dimensional (3D) printed model focused on full arch measurements at few points. The aim of this study was to examine the dimensional accuracy of 3D-printed models which were teeth-prepped for three-unit fixed prostheses, especially at margin and proximal contact areas. The prepped dental model was scanned with a desktop scanner. Using this reference file, test models were fabricated by digital light processing (DLP), Multi-Jet printing (MJP), and stereo-lithography apparatus (SLA) techniques. We calculated the accuracy (trueness and precision) of 3D-printed models on 3D planes, and deviations of each measured points at buccolingual and mesiodistal planes. We also analyzed the surface roughness of resin printed models. For overall 3D analysis, MJP showed significantly higher accuracy (trueness) than DLP and SLA techniques; however, there was not any statistically significant difference on precision. For deviations on margins of molar tooth and distance to proximal contact, MJP showed significantly accurate results; however, for a premolar tooth, there was no significant difference between the groups. 3D color maps of printed models showed contraction buccolingually, and surface roughness of the models fabricated by MJP technique was observed as the lowest. The accuracy of the 3D-printed resin models by DLP, MJP, and SLA techniques showed a clinically acceptable range to use as a working model for manufacturing dental prostheses


Author(s):  
Keunbada Son ◽  
Wan-Sun Lee ◽  
Kyu-Bok Lee

This in vitro study aimed to evaluate the 3D analysis for complete arch, half arch, and tooth preparation region by using four analysis software programs. The CAD reference model (CRM; N = 1 per region) and CAD test models (CTMs; N = 20 per software) of complete arch, half arch, and tooth preparation were obtained by using scanners. For both CRM and CTMs, mesh data other than the same area were deleted. For 3D analysis, four analysis software programs (Geomagic control X, GOM Inspect, Cloudcompare, and Materialise 3-matic) were used in the alignment of CRM and CTMs as well as in the 3D comparison. Root mean square (RMS) was regarded as the result of the 3D comparison. One-way analysis of variance and Tukey honestly significant difference tests were performed for statistical comparison of four analysis software programs (α = 0.05). In half-arch and tooth preparation region, the four analysis software programs showed a significant difference in RMS values (p < 0.001), but in complete-arch region, no significant difference was found among the four software programs (p = 0.139). As the area of the virtual cast for 3D analysis becomes smaller, variable results are obtained depending on the software program used, and the difference in results among software programs are not considered in the 3D analysis for complete-arch region.


2021 ◽  
Vol 11 (13) ◽  
pp. 5994
Author(s):  
Li Hsin Lin ◽  
Joshua Granatelli ◽  
Frank Alifui-Segbaya ◽  
Laura Drake ◽  
Derek Smith ◽  
...  

The objective of this study was to propose a standardised methodology for assessing the accuracy of three-dimensional printed (3DP) full-arch dental models and the impact of storage using two printing technologies. A reference model (RM) comprising seven spheres was 3D-printed using digital light processing (MAX UV, MAX) and stereolithography (Form 2, F2) five times per printer. The diameter of the spheres (n = 35) represented the dimensional trueness (DT), while twenty-one vectors (n = 105) extending between the sphere centres represented the full-arch trueness (FT). Samples were measured at two (T1) and six (T2) weeks using a commercial profilometer to assess their dimensional stability. Significant (p < 0.05) contraction in DT occurred at T1 and T2 with a medium deviation of 108 µm and 99 µm for MAX, and 117 µm and 118 µm for F2, respectively. No significant (p > 0.05) deviations were detected for FT. The detected median deviations were evenly distributed across the arch for MAX at <50 µm versus F2, where the greatest error of 278 µm was in the posterior region. Storage did not significantly impact the model’s DT in contrast to FT (p < 0.05). The proposed methodology was able to assess the accuracy of 3DP. Storage significantly impacted the full-arch accuracy of the models up to 6 weeks post-printing.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jae-Young Kim ◽  
Michael D. Han ◽  
Kug Jin Jeon ◽  
Jong-Ki Huh ◽  
Kwang-Ho Park

Abstract Background The purpose of this study was to investigate the differences in configuration and dimensions of the anterior loop of the inferior alveolar nerve (ALIAN) in patients with and without mandibular asymmetry. Method Preoperative computed tomography images of patients who had undergone orthognathic surgery from January 2016 to December 2018 at a single institution were analyzed. Subjects were classified into two groups as “Asymmetry group” and “Symmetry group”. The distance from the most anterior and most inferior points of the ALIAN (IANant and IANinf) to the vertical and horizontal reference planes were measured (dAnt and dInf). The distance from IANant and IANinf to the mental foramen were also calculated (dAnt_MF and dInf_MF). The length of the mandibular body and symphysis area were measured. All measurements were analyzed using 3D analysis software. Results There were 57 total eligible subjects. In the Asymmetry group, dAnt and dAnt_MF on the non-deviated side were significantly longer than the deviated side (p < 0.001). dInf_MF on the non-deviated side was also significantly longer than the deviated side (p = 0.001). Mandibular body length was significantly longer on the non-deviated side (p < 0.001). There was no significant difference in length in the symphysis area (p = 0.623). In the Symmetry group, there was no difference between the left and right sides for all variables. Conclusion In asymmetric patients, there is a difference tendency in the ALIAN between the deviated and non-deviated sides. In patients with mandibular asymmetry, this should be considered during surgery in the anterior mandible.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1524
Author(s):  
Sadikalmahdi Abdella ◽  
Souha H. Youssef ◽  
Franklin Afinjuomo ◽  
Yunmei Song ◽  
Paris Fouladian ◽  
...  

Three-dimensional (3D) printing is among the rapidly evolving technologies with applications in many sectors. The pharmaceutical industry is no exception, and the approval of the first 3D-printed tablet (Spiratam®) marked a revolution in the field. Several studies reported the fabrication of different dosage forms using a range of 3D printing techniques. Thermosensitive drugs compose a considerable segment of available medications in the market requiring strict temperature control during processing to ensure their efficacy and safety. Heating involved in some of the 3D printing technologies raises concerns regarding the feasibility of the techniques for printing thermolabile drugs. Studies reported that semi-solid extrusion (SSE) is the commonly used printing technique to fabricate thermosensitive drugs. Digital light processing (DLP), binder jetting (BJ), and stereolithography (SLA) can also be used for the fabrication of thermosensitive drugs as they do not involve heating elements. Nonetheless, degradation of some drugs by light source used in the techniques was reported. Interestingly, fused deposition modelling (FDM) coupled with filling techniques offered protection against thermal degradation. Concepts such as selection of low melting point polymers, adjustment of printing parameters, and coupling of more than one printing technique were exploited in printing thermosensitive drugs. This systematic review presents challenges, 3DP procedures, and future directions of 3D printing of thermo-sensitive formulations.


2018 ◽  
Vol 19 (4) ◽  
pp. 1199-1215 ◽  
Author(s):  
Melissa A. Babilonia-Rosa ◽  
H. Kenny Kuo ◽  
Maria T. Oliver-Hoyo

Noncovalent interactions determine the three-dimensional structure of macromolecules and the binding interactions between molecules. Students struggle to understand noncovalent interactions and how they relate to structure–function relationships. Additionally, students’ difficulties translating from two-dimensional representations to three-dimensional representations add another layer of complexity found in macromolecules. Therefore, we developed instructional resources that use 3D physical models to target student understanding of noncovalent interactions of small molecules and macromolecules. To this effect, we monitored indicators of knowledge integration as evidenced in student-generated drawings. Analysis of the drawings revealed that students were able to incorporate relevant conceptual features into their drawings from different sources as well as present their understanding from different perspectives.


Author(s):  
Chia-An Wu ◽  
Andrew Squelch ◽  
Zhonghua Sun

Aim: To determine a printing material that has both elastic property and radiology equivalence close to real aorta for simulation of endovascular stent graft repair of aortic dissection. Background: With the rapid development of three-dimensional (3D) printing technology, a patient-specific 3D printed model is able to help surgeons to make better treatment plan for Type B aortic dissection patients. However, the radiological properties of most 3D printing materials have not been well characterized. This study aims to investigate the appropriate materials for printing human aorta with mechanical and radiological properties similar to the real aortic computed tomography (CT) attenuation. Objective: Quantitative assessment of CT attenuation of different materials used in 3D printed models of aortic dissection for developing patient-specific 3D printed aorta models to simulate type B aortic dissection. Method: A 25-mm length of aorta model was segmented from a patient’s image dataset with diagnosis of type B aortic dissection. Four different elastic commercial 3D printing materials, namely Agilus A40 and A50, Visijet CE-NT A30 and A70 were selected and printed with different hardness. Totally four models were printed out and conducted CT scanned twice on a 192-slice CT scanner using the standard aortic CT angiography protocol, with and without contrast inside the lumen.Five reference points with region of interest (ROI) of 1.77 mm2 were selected at the aortic wall and intimal flap and their Hounsfield units (HU) were measured and compared with the CT attenuation of original CT images. The comparison between the patient’s aorta and models was performed through a paired-sample t-test to determine if there is any significant difference. Result: The mean CT attenuation of aortic wall of the original CT images was 80.7 HU. Analysis of images without using contrast medium showed that the material of Agilus A50 produced the mean CT attenuation of 82.6 HU, which is similar to that of original CT images. The CT attenuation measured at images acquired with other three materials was significantly lower than that of original images (p<0.05). After adding contrast medium, Visijet CE-NT A30 had an average CT attenuation of 90.6 HU, which is close to that of the original images with statistically significant difference (p>0.05). In contrast, the CT attenuation measured at images acquired with other three materials (Agilus A40, A50 and Visiject CE-NT A70) was 129 HU, 135 HU and 129.6 HU, respectively, which is significantly higher than that of original CT images (p<0.05). Conclusion: Both Visijet CE-NT and Agilus have tensile strength and elongation close to real patient’s tissue properties producing similar CT attenuation. Visijet CE-NT A30 is considered the appropriate material for printing aorta to simulate contrast-enhanced CT imaging of type B aortic dissection. Due to lack of body phantom in the experiments, further research with simulation of realistic anatomical body environment should be conducted.


2019 ◽  
Vol 9 (9) ◽  
pp. 1798 ◽  
Author(s):  
Son ◽  
Yu ◽  
Yoon ◽  
Lee

This study set out to compare the three-dimensional (3D) trueness of crowns produced from three types of lithium disilicate blocks. The working model was digitized, and single crowns (maxillary left second molar) were designed using computer-aided design (CAD) software. To produce a crown design model (CDM), a crown design file was extracted from the CAD software. In addition, using the CDM file and a milling machine (N = 20), three types of lithium disilicate blocks (e.max CAD, HASS Rosetta, and VITA Suprinity) were processed. To produce a crown scan model (CSM), the inner surface of each fabricated crown was digitized using a touch-probe scanner. In addition, using 3D inspection software, the CDM was partitioned (into marginal, axis, angular, and occlusal regions), the CDM and CSM were overlapped, and a 3D analysis was conducted. A Kruskal–Wallis test (α = 0.05) was conducted with all-segmented teeth with the root mean square (RMS), and they were analyzed using the Mann–Whitney U-test and the Bonferroni correction method as a post hoc test. There was a significant difference in the trueness of the crowns according to the type of lithium disilicate block (p < 0.001). The overall RMS value was at a maximum for e.max (42.9 ± 4.4 µm), followed by HASS (30.1 ± 9.0 µm) and then VITA (27.3 ± 7.9 µm). However, there was no significant difference between HASS and VITA (p = 0.541). There were significant differences in all regions inside the crown (p < 0.001). There was a significantly high trueness in the angular region inside the crown (p < 0.001). A correction could thus be applied in the CAD process, considering the differences in the trueness by the type of lithium disilicate block. In addition, to attain a crown with an excellent fit, it is necessary to provide a larger setting space for the angular region during the CAD process.


2016 ◽  
Vol 40 (2) ◽  
pp. 201-205 ◽  
Author(s):  
C. J. Daly ◽  
J. M. Bulloch ◽  
M. Ma ◽  
D. Aidulis

Sophisticated three-dimensional animation and video compositing software enables the creation of complex multimedia instructional movies. However, if the design of such presentations does not take account of cognitive load and multimedia theories, then their effectiveness as learning aids will be compromised. We investigated the use of animated images versus still images by creating two versions of a 4-min multimedia presentation on vascular neuroeffector transmission. One version comprised narration and animations, whereas the other animation comprised narration and still images. Fifty-four undergraduate students from level 3 pharmacology and physiology undergraduate degrees participated. Half of the students watched the full animation, and the other half watched the stills only. Students watched the presentation once and then answered a short essay question. Answers were coded and marked blind. The “animation” group scored 3.7 (SE: 0.4; out of 11), whereas the “stills” group scored 3.2 (SE: 0.5). The difference was not statistically significant. Further analysis of bonus marks, awarded for appropriate terminology use, detected a significant difference in one class (pharmacology) who scored 0.6 (SE: 0.2) versus 0.1 (SE: 0.1) for the animation versus stills group, respectively ( P = 0.04). However, when combined with the physiology group, the significance disappeared. Feedback from students was extremely positive and identified four main themes of interest. In conclusion, while increasing student satisfaction, we do not find strong evidence in favor of animated images over still images in this particular format. We also discuss the study design and offer suggestions for further investigations of this type.


2009 ◽  
Vol 3 (2) ◽  
Author(s):  
A. Mohamed ◽  
A. Erdman ◽  
G. Timm

Previous biomechanical models of the penis that have attempted to simulate penile erections have either been limited to two-dimensional geometry, simplified three-dimensional geometry or made inaccurate assumptions altogether. Most models designed the shaft of the penis as a one-compartment pressurized vessel fixed at one end, when in reality it is a two-compartments pressurized vessel, in which the compartments diverge as they enter the body and are fixed at two separate points. This study began by designing simplified two-dimensional and three-dimensional models of the erect penis using Finite Element Analysis (FEA) methods with varying anatomical considerations for analyzing structural stresses, axial buckling and lateral deformation. The study then validated the results by building physical models replicating the computer models. Finally a more complex and anatomically accurate model of the penis was designed and analyzed. There was a significant difference in the peak von-Mises stress distribution between the one-compartment pressurized vessel and the more anatomically correct two-compartments pressurized vessel. Furthermore, the two-compartments diverging pressurized vessel was found to have more structural integrity when subject to external lateral forces than the one-compartment pressurized vessel. This study suggests that Mother Nature has favored an anatomy of two corporal cavernosal bodies separated by a perforated septum as opposed to one corporal body, due to better structural integrity of the tunica albuginea when subject to external forces.


Sign in / Sign up

Export Citation Format

Share Document