scholarly journals Damping Property of Cement Mortar Incorporating Damping Aggregate

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 792 ◽  
Author(s):  
Yaogang Tian ◽  
Dong Lu ◽  
Jianwei Zhou ◽  
Yuxuan Yang ◽  
Zhenjun Wang

This study proposes a new cement mortar incorporating damping aggregate (DA) and investigates the mechanical properties and damping property of the cement mortar. Four types of DA were prepared, lightweight aggregate presaturated water and three types of polymer emulsion. Further, the effects of polypropylene fiber and rubber powder on the performance of the cement mortar were studied. The experimental results showed that the damping ratio of specimens containing 70% DA was approximately three times higher than that of the reference mortar, with a slight decrease in the mechanical properties. Adding fiber was more effective than rubber powder in improving the damping ratio of the cement mortar, and the optimal dosage of fiber was 0.5%.

2021 ◽  
Vol 13 (7) ◽  
pp. 3697
Author(s):  
Hui Chen ◽  
Xin Huang ◽  
Rui He ◽  
Zhenheng Zhou ◽  
Chuanqing Fu ◽  
...  

In this work, the relationships between the mechanical properties (i.e., compressive strength and flexural strength) and loading speed of polypropylene fiber (PPF)-incorporated cement mortar at different ages (before 28 days) were studied. A total of 162 cubic samples for compressive strength tests and 162 cuboid samples for flexural strength tests were casted and tested. Analytical relationships between the sample properties (i.e., sample age, PPF content, and loading speed) and compressive and flexural strength were proposed based on the experimental data, respectively. Of the predicted compressive and flexural strength results, 70.4% and 75.9% showed less than 15% relative error compared with the experimental results, respectively.


2011 ◽  
Vol 477 ◽  
pp. 274-279 ◽  
Author(s):  
Yi Xu ◽  
Lin Hua Jiang ◽  
Hong Qiang Chu ◽  
Lei Chen

In this study, the effects of fiber types on the mechanical properties of lightweight aggregate concretes were investigated. Three types of fibers, namely, polypropylene fiber, steel fiber and water hyacinth (Eichhornia crassipes) fiber, and two types of lightweight aggregates, namely, expanded polystyrene and ceramsite were used. The compressive strength and splitting tensile strength of concretes were tested. The results show that both the compressive strength and the splitting tensile strength were improved by adding a reasonable volume of steel fiber and polypropylene fiber into LWAC. The addition of water hyacinth fiber had little effect on the compressive strength of LWAC, while a little increase was observed in the splitting tensile strength.


2011 ◽  
Vol 197-198 ◽  
pp. 911-914 ◽  
Author(s):  
Li Yun Pan ◽  
Hao Yuan ◽  
Shun Bo Zhao

Tests were carried out to study mechanical properties of hybrid fiber reinforced full lightweight aggregate concrete (HFRFLAC), the hybrid fiber was composed by steel fiber and polypropylene fiber, the expanded-shale and lightweight sand were used as coarse and fine aggregates. The apparent density and strengths in cubic compressive, splitting tensile and flexural tensile states of HFRFLAC were obtained. The results show that the average dry apparent density increases with the increasing cement content, which is much more affected by fraction of steel fiber by volume than mass content of polypropylene fiber; the tensile strengths increase somewhat with the increasing mass content of polypropylene fiber; all of the strengths increase with the increasing fraction of steel fiber by volume, and obvious are the enhancement of tensile strengths; there are somewhat relevance between the effects of polypropylene fiber and steel fiber on mechanical properties of HFRFLAC.


2012 ◽  
Vol 594-597 ◽  
pp. 816-819
Author(s):  
Zhi Hao Liu ◽  
Chuan Xiao Liu ◽  
Dong Chen Huang ◽  
Long Wang

Through the uniaxial compression test, the mechanical properties of different placements of iron wire cement mortar, e.g. compressive strength and elastic modulus, were studied, and the mass ratios of cement, sands and water influencing the mechanical properties were put forward, which provided the experimental results for reference for the wide use of the iron wire cement mortar material. From the study it is gained that: (1) The best placement of the iron wires in cement mortar is horizontal. (2) The best mass ratio of the cement, sands and water is 1:4.70:0.81.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Linling Ma ◽  
Bin Wang ◽  
Lei Zeng ◽  
Yunfeng Xiao ◽  
Heng Zhang ◽  
...  

To verify the damping improvement by replacing partial sand with rubber powder in the concrete process, this study investigated the effects of the rubber powder (5%, 10%, 15%, and 20%) on the mechanical properties and micromechanism of polyvinyl alcohol (PVA) fiber-reinforced concrete. In addition, in order to discuss its damping performance, free vibration test was conducted. Microstructure analyses were conducted by the scanning electron microscope (SEM) test. These results indicated that, as the content of the rubber powder increased, the damping ratio increased, and the compressive strength decreased, but this strength loss can be effectively controlled by adding PVA fiber. The rubber powder with a volume content of 5% and PVA with a mass of 2.4 kg/m3 were the most optimal mixing to balance the strength and damping requirement. According to the SEM test results, the rubber powder was beneficial to improve the damping ratio of PVA concrete, but it aggravated its interface defects.


2020 ◽  
pp. 1-4
Author(s):  
Eethar Thanon Dawood ◽  
◽  
Tamara Waleed Ghanim ◽  

In the present paper the behavior of mortar reinforced with polypropylene fibers was studied. Different percentages of polypropylene fibers such as 0, 0.2, 0.4, 0.6 and 0.8% as volumetric fractions were used. Different properties which are flowability, density, compressive strength, flexural strength and splitting tensile strength were evaluated for all mix combinations. The experimental results indicated that a reduction in flowability was obtained with increased polypropylene fibers content. Besides, it can be concluded that the incorporation of polypropylene fiber may significantly reduce the density of mortar. The use of low volume fraction of polypropylene fiber improves the mechanical properties of HPM. Thus, the use of 0.2% of such fiber increases compressive strength by about (4-10%), at various ages.


2010 ◽  
Vol 97-101 ◽  
pp. 1620-1623 ◽  
Author(s):  
Hong Zhi Cui ◽  
Feng Xing

Many investigations have been conducted on compressive strength of lightweight aggregate concretes (LWAC), but there are few experimental studies on the relationship between compressive strength, bond strength and elastic modulus of LWAC. In this paper, the specimens of twenty kinds of LWACs with different mix proportions were made. Properties of compressive strength, bond strength and modulus of elasticity of the LWACs were tested. Based on the testing resulting, equations for relationship between bond strength and compressive strength of the LWAC were established. For LWAC modulus of elasticity, the experimental results of this study can fit well with predicted equation of ACI 318


Sign in / Sign up

Export Citation Format

Share Document