scholarly journals Strength Analysis of a Rib-Stiffened GLARE-Based Thin-Walled Structure

Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2929
Author(s):  
Andrzej Kubit ◽  
Tomasz Trzepieciński ◽  
Bogdan Krasowski ◽  
Ján Slota ◽  
Emil Spišák

This paper presents a new product, a glass laminate aluminium-reinforced epoxy (GLARE)-based thin-walled structure with a stiffener in the form of a longitudinal rib. The stiffening rib in an outer metallic layer of a GLARE-based panel was fabricated by the incremental sheet forming technique and Alclad 2024-T3 aluminium alloy sheets were used as adherends. The strength properties of the adhesive joint between the layers of the fibre metal laminates (FMLs) were determined in a uniaxial tensile test, peel drum test, tensile/shear test and short-beam three-point-bending test. Two variants of FMLs were considered, with an adhesive film and without an adhesive film between the adherends and the epoxy/glass prepreg. The FMLs were tested at three different temperatures that corresponded to those found under real aircraft operating conditions, i.e., −60 °C, room temperature and +80 °C. It was found that the temperatures do not affect the tensile strength and shear strength of the FMLs tested. However, there was a noticeable increase in the stiffness of samples stretched at reduced temperature. An additional adhesive film layer between the adherends and the glass/epoxy prepreg significantly improves the static peeling strength of the joint both at reduced and at elevated temperatures. A clear increase in the critical force at which buckling occurs has been clearly demonstrated in the uniaxial compression test of GLARE-based rib-stiffened panels. In the case of GLARE-based rib-stiffened panels, the critical force averaged 15,370 N, while for the non-embossed variant, it was 11,430 N, which translates into a 34.5% increase in critical force.

2020 ◽  
Vol 1012 ◽  
pp. 349-353
Author(s):  
D.B. Colaço ◽  
M.A. Ribeiro ◽  
T.M. Maciel ◽  
R.H.F. de Melo

The demand for lighter materials with suitable mechanical properties and a high resistance to corrosion has been increasing in the industries. Therefore, aluminum appears as an alternative due to its set of properties. The aim of this work was to evaluate residual stress levels and mechanical properties of welded joints of Aluminum-Magnesium alloy AA 5083-O using the Friction Stir Welding process. For mechanical characterization were performed a uniaxial tensile test, Vickers hardness, bending test and, finally, the determination of residual stresses. It was concluded that welding by FSW process with an angle of inclination of the tool at 3o, established better results due to better mixing of materials. The best results of tensile strength and a lower level of residual stresses were obtained using a tool rotation speed of 340 RPM with welding advance speed of 180 mm/min and 70 mm/min.


2011 ◽  
Vol 250-253 ◽  
pp. 765-768
Author(s):  
Wen Ling Tian ◽  
Lei Xu ◽  
Xiao Wei Wang

For the compressive strength of the normal concrete is high and the tensile strength is low, it is typically brittle material. The ultimate tensile elongation of it is insufficiently 1/1000. Zhongwei Wu, an academician of Chinese Academy of Engineering pointed out that compounding cementitious composites was the way to make it high-performance, and fiber reinforced was the key[1]. Polyvinyl Alcohol Engineered Cementitious Composites has super flexural performance[2] and stretching ability[3],and its ultimate deflection is approximately 40 times larger than that of normal concrete when bended, similar to the multiple cracking and super toughness of uniaxial tensile test, it shows significant bending hardening behavior in the process of the test. This paper studied its flexural property by four point bending test .


Author(s):  
Vishnu Verma ◽  
A. K. Ghosh ◽  
G. Behera ◽  
Kamal Sharma ◽  
R. K. Singh

Miniature disk bending test is used to evaluate the mechanical behavior of irradiated materials and its properties — mainly ductility loss due to irradiation in steel. In Miniature Disk Bending Machine the specimen is firmly held between the two horizontal jaws of punch, and an indentor with spherical ball travels vertically. Researchers have observed reasonable correlations between values of the yield stress, strain hardening and ultimate tensile strength estimated from this test and mechanical properties determined from the uniaxial tensile test. Some methods for the analysis of miniature disk bending, proposed by various authors have been discussed in the paper. It is difficult to distinguish between the regimes of elastic and plastic deformation since local plastic deformation occurs for very small values of load when the magnitude of spatially averaged stress will be well below the yield stress. Also, the analytical solution for large amplitude, plastic deformation becomes rather unwieldy. Hence a finite element analysis has been carried out. The finite element model, considers contact between the indentor and test specimen, friction between various pairs of surfaces and elastic plastic behavior. The load is increased in steps and converged solution has been obtained and analysis terminated at a load beyond which a stable solution cannot be obtained. A sensitivity study has been carried out by varying the various parameters defining the material properties by ±10% around the base values. This study has been carried out to generate a data base for the load-deflection characteristics of similar materials from which the material properties can be evaluated by an inverse calculation. It is seen that the deflection obtained by analytical elastic bending theory is significantly lower than that obtained by the elasto-plastic finite element solution at relatively small values of load. The FE solution and experimental results are in reasonably good agreement.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1785 ◽  
Author(s):  
Andrzej Kubit ◽  
Tomasz Trzepiecinski ◽  
Łukasz Święch ◽  
Koen Faes ◽  
Jan Slota

Many aircraft structures are thin walled and stringer-stiffened, and therefore, prone to a loss of stability. This paper deals with accurate and validated stability analysis of the model of aircraft skin under compressive loading. Both experimental and numerical analyzes are conducted. Two different methods of joining panel elements are considered. In the first case, the panel is fabricated using rivets. In the second variant, the refill friction stir spot welding technique is used. Both types of panels are loaded in axial compression in a uniaxial tensile testing machine. The geometrically and physically nonlinear finite element analyzes of the panels were carried out in ABAQUS/Standard. The Digital Image Correlation measurement system ARAMIS has been utilized to monitor the buckling behavior and failure mode in the skin-stringer interface of the stiffened panels. The results of experiments and the digital image correlation system are presented and compared to the numerical simulations.


2021 ◽  
Vol 12 (2) ◽  
pp. 103
Author(s):  
Sudarsono Sudarsono ◽  
Hidayat Hidayat ◽  
Aminur Aminur ◽  
Sarwo Pranoto ◽  
Prinob Aksar

Welding is one of the methods widely used in the joining of metals for structural elements. One of the factors that influence the strength of welded metals is types of welding joints. Suitability of the type of welding joint with geometries of base metals is required to obtain welded metal products with optimum properties. In this study an attempt is made to investigate mechanical properties of welded metals with two different types of joints (single-V and double-V) using the shielded metal arc welding (SMAW) process. Low carbon steel with bevel angle of 60° was used in this study. Welding process was performed using current of 70 A with a constant welding speed. The flexural properties and uniaxial tensile properties are studied by three-point bending test and uniaxial tensile test respectively. Test results show that the tensile strength and the bending strength of single-V specimens is 521.64 N/mm2 and 525.11 N/mm2 respectively. In addition, the tensile strength and the bending strength of double-V specimens is 517.33 N/mm2 and  504.24 N/mm2 respectively


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Stanislaw Kut ◽  
Grazyna Ryzinska ◽  
Bernadetta Niedzialek

Abstract The article presents the results of tests in order to verifying the effectiveness of the nine selected elastomeric material models (Neo-Hookean, Mooney with two and three constants, Signorini, Yeoh, Ogden, Arruda-Boyce, Gent and Marlow), which the material constants were determined in one material test - the uniaxial tension testing. The convergence assessment of nine analyzed models were made on the basis of their performance from an experimental bending test of the elastomer samples from the results of numerical calculations FEM for each material models. To calculate the material constants for the analyzed materials, a model has been generated by the stressstrain characteristics created as a result of experimental uniaxial tensile test with elastomeric dumbbell samples, taking into account the parameters received in its 18th cycle. Using such a calculated material constants numerical simulation of the bending process of a elastomeric, parallelepipedic sampleswere carried out using MARC / Mentat program.


2020 ◽  
Vol 994 ◽  
pp. 44-51
Author(s):  
Emil Evin ◽  
Miroslav Tomáš

Nowadays, it is important to select the proper material for parts of the car-body’s deformation zones in terms of passenger safety. Due to wide range of high-strength steels on the market, the article presents the way of selecting the material by determining the deformation work and the stiffness constant, both measured by the stretch-bending test. The procedure was verified on a high-strength micro-alloyed steel HSLA, high-strength multi-phase steels DP 600 and TRIP, and an austenitic stainless steel AISI 304. The results indicate the austenitic steel is better to use in the deformation zones for the frontal impact, while multi-phase steels are more suitable for deformation zones at the lateral impact. The regression model describing the dependence of the deformation work measured at the stretch-bending test and the deformation work measured at uniaxial tensile test was defined as well. The model allows predicting the deformation work at stretch-bending test based on the mechanical properties measured by the tensile test.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4585
Author(s):  
Tiago Forti ◽  
Gustavo Batistela ◽  
Nadia Forti ◽  
Nicolas Vianna

Concrete exhibits a complex mechanical behavior, especially when approaching failure. Its behavior is governed by the interaction of the heterogeneous structures of the material at the first level of observation below the homogeneous continuum, i.e., at the mesoscale. Concrete is assumed to be a three-phase composite of coarse aggregates, mortar, and the interfacial transitional zone (ITZ) between them. Finite element modeling on a mesoscale requires appropriate meshes that discretize the three concrete components. As the weakest link in concrete, ITZ plays an important role. However, meshing ITZ is a challenging issue, due to its very reduced thickness. Representing ITZ with solid elements of such reduced size would produce very expensive finite element meshes. An alternative is to represent ITZ as zero-thickness interface elements. This work adopts interface elements for ITZ. Damage plasticity model is adopted to describe the softening behavior of mortar in compression, while cohesive fractures describe the cracking process. Numerical experiments are presented. First example deals with the estimation of concrete Young’s modulus. Experimental tests were performed to support the numerical test. A second experiment simulates a uniaxial compression test and last experiment simulates a uniaxial tensile test, where results are compared to data from the literature.


2007 ◽  
Vol 7-8 ◽  
pp. 187-194 ◽  
Author(s):  
Rafal M. Molak ◽  
M. Kartal ◽  
Zbigniew Pakiela ◽  
W. Manaj ◽  
Mark Turski ◽  
...  

The aim of this collaborative study was to measure mechanical properties of 14MoV67-3 steel taken from small sections of material machined in-situ from an operating high pressure collector pipe after different operating lifetimes (from 0h to 186 000h) at elevated temperatures (540°C). Conventional methods of measuring mechanical properties of materials, such as the uniaxial tensile test require relatively large test samples. This can create difficulties when the amount of material available for testing is limited. One way of measuring mechanical properties from small quantities of material is using micro tensile test samples. In this work, micro-samples with a total length of 7.22mm were used. Digital Image Correlation method (DIC) was employed for the strain measurements in a uniaxial tensile test. This paper shows that there is measurable difference in the yield, ultimate tensile strength and elongation to failure as a function of the plant operating conditions. This work demonstrates, therefore, a ‘semi-invasive’ method of determining uniaxial stress-strain behaviour from plant components.


2019 ◽  
Vol 9 (7) ◽  
pp. 1293 ◽  
Author(s):  
Matthias De Munck ◽  
Tine Tysmans ◽  
Jan Wastiels ◽  
Panagiotis Kapsalis ◽  
Jolien Vervloet ◽  
...  

Using large lightweight insulating sandwich panels with cement composite faces offers great possibilities for the renovation of existing dwellings. During their lifetime, these panels are subjected to wind loading, which is equivalent to a repeated loading. To guarantee the structural performance of these panels during their entire lifetime, it is necessary to quantify the impact of these loading conditions on the long term. The fatigue behaviour was, therefore, examined in this paper both at the material level of the faces and at the element level as well. plain textile reinforced cementitious composite (TRC) specimens were subjected to 100,000 loading cycles by means of a uniaxial tensile test, while sandwich beams were loaded 100.000 times with a four-point bending test. Results show that the residual behaviour is strongly dependent on the occurrence of cracks. The formation of cracks leads to a reduction of the initial stiffness. The ultimate strength is only affected in a minor way by the preloading history.


Sign in / Sign up

Export Citation Format

Share Document