scholarly journals Synthesis and Characterization of GdVO4:Nd Near-Infrared Phosphors for Optical Time-Gated In Vivo Imaging

Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3564
Author(s):  
Ben Nimmegeers ◽  
Ewoud Cosaert ◽  
Tecla Carbonati ◽  
Daniela Meroni ◽  
Dirk Poelman

Many medical imaging techniques use some form of ionizing radiation. This radiation is not only potentially harmful for the patient, but also for the medical personnel. An alternative imaging technique uses near-infrared (NIR) emitting luminescent particles as tracers. If the luminescent probes are excited inside the body, autofluorescence from the biological tissues is also induced. This problem can be circumvented by using time-gated imaging. Hereby, the light collection only starts when the fluorescence of the tissue has decayed. This requires particles showing both excitation and emission in the near-infrared and a long decay time so that they can be used in time-gated imaging. In this work, Nd-doped GdVO4 NIR emitting particles were prepared using solid state reaction. Particles could be efficiently excited at 808 nm, right in the first transparency window for biological tissues, emitted in the second transparency window at around 1064 nm, and showed a decay time of the order of 70 μs, sufficiently long for time-gating. By using a Gd-containing host, these particles could be ideally suited for multimodal optical/magnetic imaging after size reduction and surface functionalization.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
C. Hall ◽  
Y. von Grabowiecki ◽  
S. P. Pearce ◽  
C. Dive ◽  
S. Bagley ◽  
...  

Abstract Background In vivo imaging using fluorescence is used in cancer biology for the detection, measurement and monitoring of tumours. This can be achieved with the expression of fluorescent proteins such as iRFP, which emits light at a wavelength less attenuated in biological tissues compared to light emitted by other fluorescent proteins such as GFP or RFP. Imaging platforms capable of detecting fluorescent tumours in small animals have been developed but studies comparing the performance of these platforms are scarce. Results Through access to three platforms from Xenogen, Bruker and Li-Cor, we compared their ability to detect iRFP-expressing subcutaneous tumours as well as tumours localised deeper within the body of female NSG mice. Each platform was paired with proprietary software for image analyse, but the output depends on subjective decisions from the user. To more objectively compare platforms, we developed an ‘in house’ software-based approach which results in lower measured variability between mice. Conclusions Our comparisons showed that all three platforms allowed for reliable detection and monitoring of subcutaneous iRFP tumour growth. The biggest differences between platforms became apparent when imaging deeper tumours with the Li-Cor platform detecting most tumours and showing the highest dynamic range.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 922
Author(s):  
William Querido ◽  
Shital Kandel ◽  
Nancy Pleshko

Advances in vibrational spectroscopy have propelled new insights into the molecular composition and structure of biological tissues. In this review, we discuss common modalities and techniques of vibrational spectroscopy, and present key examples to illustrate how they have been applied to enrich the assessment of connective tissues. In particular, we focus on applications of Fourier transform infrared (FTIR), near infrared (NIR) and Raman spectroscopy to assess cartilage and bone properties. We present strengths and limitations of each approach and discuss how the combination of spectrometers with microscopes (hyperspectral imaging) and fiber optic probes have greatly advanced their biomedical applications. We show how these modalities may be used to evaluate virtually any type of sample (ex vivo, in situ or in vivo) and how “spectral fingerprints” can be interpreted to quantify outcomes related to tissue composition and quality. We highlight the unparalleled advantage of vibrational spectroscopy as a label-free and often nondestructive approach to assess properties of the extracellular matrix (ECM) associated with normal, developing, aging, pathological and treated tissues. We believe this review will assist readers not only in better understanding applications of FTIR, NIR and Raman spectroscopy, but also in implementing these approaches for their own research projects.


2016 ◽  
Vol 09 (02) ◽  
pp. 1650005 ◽  
Author(s):  
Valeriya S. Maryakhina ◽  
Vyacheslav V. Gun’kov

In this paper, the mathematical model of distribution of the injected compound in biological liquid flow has been described. It is considered that biological liquid contains a few phases such as water, peptides and cells. The injected compound (for example, photosensitizer) can interact with peptides and cells. At the time, viscosity of the biological liquid depends on pathology present in organism. The obtained distribution of the compound connects on changes of its fluorescence spectra which are registered during fluorescent diagnostics of tumors. It is obtained that the curves do not have monotonic nature. There is a sharp curves decline in the first few seconds after injection. Intensivity of curves rises after decreasing. It is especially pronounced for wavelength 590[Formula: see text]nm and 580[Formula: see text]nm (near the “transparency window” of biological tissues). Time of inflection point shifts from 8.4[Formula: see text]s to 6.9[Formula: see text]s for longer wavelength. However, difference between curves is little for different viscosity means of the biological liquid. Thus, additional pathology present in organism does not impact to the results of in vivo biomedical investigations.


1999 ◽  
Vol 60 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Cs. Szabo ◽  
L. Babinszky ◽  
M.W.A. Verstegen ◽  
O. Vangen ◽  
A.J.M. Jansman ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4819
Author(s):  
Yong Joon Suh ◽  
Tae Hyeon Lim ◽  
Hak Soo Choi ◽  
Moon Suk Kim ◽  
Sang Jin Lee ◽  
...  

Three-dimensional (3D) printing technology holds great potential to fabricate complex constructs in the field of regenerative medicine. Researchers in the surgical fields have used 3D printing techniques and their associated biomaterials for education, training, consultation, organ transplantation, plastic surgery, surgical planning, dentures, and more. In addition, the universal utilization of 3D printing techniques enables researchers to exploit different types of hardware and software in, for example, the surgical fields. To realize the 3D-printed structures to implant them in the body and tissue regeneration, it is important to understand 3D printing technology and its enabling technologies. This paper concisely reviews 3D printing techniques in terms of hardware, software, and materials with a focus on surgery. In addition, it reviews bioprinting technology and a non-invasive monitoring method using near-infrared (NIR) fluorescence, with special attention to the 3D-bioprinted tissue constructs. NIR fluorescence imaging applied to 3D printing technology can play a significant role in monitoring the therapeutic efficacy of 3D structures for clinical implants. Consequently, these techniques can provide individually customized products and improve the treatment outcome of surgeries.


Author(s):  
Benjamin Pruden ◽  
Ozan Akkus

Stress fractures occur in bones of athletes and soldiers due to the accumulation of microcracks [1]. Detection of precursor acoustic emissions (i.e. ultrasonic stress waves) resulting from microcrack activity may help predict failure onset before continuous physiological activity results in full-blown fracture. An acoustic emission wave generated from a microcrack in bone will be diminished by dispersion, mode separation, reflection, and viscous losses induced by the biological tissues (skin, muscle, fat) between the source and the transducer. While others have recorded waves emanating from unknown loci in human knee in vivo using acoustic emission method [2], there is no means to appreciate how far these waves can travel in the body. Several studies have characterized the ultrasound attenuation in bone [3] and muscle analog homogenates [4] in the frequency range above 300 kHz. On the other hand, acoustic emissions are prominent in the range of 20 kHz to 300 kHz. The current study focused on identifying the attenuation of acoustic emission waves in bone and muscle tissues in a frequency range which is more relevant to acoustic emissions. This information is critical for predicting whether an emission of certain magnitude at the source can reach surface mounted sensors without being totally attenuated.


2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
Anu Rahal ◽  
Amit Kumar ◽  
Vivek Singh ◽  
Brijesh Yadav ◽  
Ruchi Tiwari ◽  
...  

Oxidative stress is a normal phenomenon in the body. Under normal conditions, the physiologically important intracellular levels of reactive oxygen species (ROS) are maintained at low levels by various enzyme systems participating in thein vivoredox homeostasis. Therefore, oxidative stress can also be viewed as an imbalance between the prooxidants and antioxidants in the body. For the last two decades, oxidative stress has been one of the most burning topics among the biological researchers all over the world. Several reasons can be assigned to justify its importance: knowledge about reactive oxygen and nitrogen species production and metabolism; identification of biomarkers for oxidative damage; evidence relating manifestation of chronic and some acute health problems to oxidative stress; identification of various dietary antioxidants present in plant foods as bioactive molecules; and so on. This review discusses the importance of oxidative stress in the body growth and development as well as proteomic and genomic evidences of its relationship with disease development, incidence of malignancies and autoimmune disorders, increased susceptibility to bacterial, viral, and parasitic diseases, and an interplay with prooxidants and antioxidants for maintaining a sound health, which would be helpful in enhancing the knowledge of any biochemist, pathophysiologist, or medical personnel regarding this important issue.


2011 ◽  
Vol 17 (2) ◽  
pp. 167-175 ◽  
Author(s):  
Joseph T. Keyes ◽  
Stacy M. Borowicz ◽  
Jacob H. Rader ◽  
Urs Utzinger ◽  
Mohamad Azhar ◽  
...  

AbstractThe biomechanical response of tissues serves as a valuable marker in the prediction of disease and in understanding the related behavior of the body under various disease and age states. Alterations in the macroscopic biomechanical response of diseased tissues are well documented; however, a thorough understanding of the microstructural events that lead to these changes is poorly understood. In this article we introduce a novel microbiaxial optomechanical device that allows two-photon imaging techniques to be coupled with macromechanical stimulation in hydrated planar tissue specimens. This allows that the mechanical response of the microstructure can be quantified and related to the macroscopic response of the same tissue sample. This occurs without the need to fix tissue in strain states that could introduce a change in the microstructural configuration. We demonstrate the passive realignment of fibrous proteins under various types of loading, which demonstrates the ability of tissue microstructure to reinforce itself in periods of high stress. In addition, the collagen and elastin response of tissue during viscoelastic behavior is reported showing interstitial fluid movement and fiber realignment potentially responsible for the temporal behavior. We also demonstrate that nonhomogeneities in fiber strain exist over biaxial regions of assumed homogeneity.


2021 ◽  
Vol 27 (1) ◽  
pp. 99-107
Author(s):  
Ali Shahin ◽  
Wesam Bachir ◽  
Moustafa Sayem El-Daher

Abstract Introduction: Due to enormous interests for laser in medicine and biology, optical properties characterization of different tissue have be affecting in development processes. In addition, the optical properties of biological tissues could be influenced by storage methods. Thus, optical properties of bovine white and grey tissues preserved by formalin have been characterized over a wide wavelength spectrum varied between 440 nm and 1000 nm. Materials and Methods: To that end, a single integrating sphere system was assembled for spectroscopic characterization and an inverse adding-doubling algorithm was used to retrieve optical coefficients, i.e. reduced scattering and absorption coefficients. Results: White matter has shown a strong scattering property in comparison to grey matter. On the other hand, the grey matter has absorbed light extensively. In comparison, the reduced scattering profile for both tissue types turned out to be consistent with prior works that characterized optical coefficients in vivo. On the contrary, absorption coefficient behavior has a different feature. Conclusion: Formalin could change the tissue’s optical properties because of the alteration of tissue’s structure and components. The absence of hemoglobin that seeps out due to the use of a formalin could reduce the absorption coefficient over the visible range. Both the water replacement by formalin could reduce the refractive index of a stored tissue and the absence of hemoglobin that scatters light over the presented wavelength range should diminish the reduced scattering coefficients over that wavelength range.


2020 ◽  
Vol 13 (05) ◽  
pp. 2041003 ◽  
Author(s):  
Yaowei Zhu ◽  
Yawei Miao ◽  
Tingting Xue ◽  
Youchang Liu ◽  
Chunying Zheng ◽  
...  

The absorption, scattering, and autofluorescence of biological tissues in short-wave infrared region (SWIR, 900–1700[Formula: see text]nm) are relatively low, so SWIR fluorescence usually has deeper penetration into living tissues, and can show a higher signal-to-noise ratio when used for imaging in vivo. However, there are few types of organic SWIR fluorescent materials currently. In this work, [Formula: see text]-azaquinodimethane ([Formula: see text]-AQM) with a quinoid structure is used as the acceptor unit, and carbazole or fluorene with sp3 hybridization are used as the donor units, two conjugated polymers were synthesized. The quinone structure is conducive to the redshift of absorption and fluorescence spectra, and the sp3 hybridization structure is conducive to weakening the aggregation quenching of polymer fluorescence. PF and PCz exhibited absorption peaks of 492[Formula: see text]nm and 508[Formula: see text]nm, respectively. The emission peaks of the two polymers are 920[Formula: see text]nm and 950[Formula: see text]nm, respectively, both in the short-wave near infrared region. The quantum yield (QY) of PF and PCz is 0.4% and 0.3%, respectively.


Sign in / Sign up

Export Citation Format

Share Document