scholarly journals Titanium Implants Coated with a Bifunctional Molecule with Antimicrobic Activity: A Rabbit Study

Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3613 ◽  
Author(s):  
Antonio Scarano ◽  
Francesco Carinci ◽  
Tiziana Orsini ◽  
Luca Valbonetti ◽  
Erda Qorri ◽  
...  

Background: Various surface treatments have been tested for titanium implants aiming at increasing their surface biocompatibility and their biological characteristics, but also the efficiency of the implant surface will have to be improved to drastically decrease peri-implantite and mucosite. In fact, the peri-implantitis and peri-implant mucositis have a high incidence in clinical practice. The nanofabrication techniques that offer the possibility to achieve the implant surface that reduces bacterial colonization could influence the osteointegration. The aim of this research was to evaluate the bone response to titanium implants coated with a bifunctional molecule with antimicrobic activity consisting of a combination of silver ions covalently bound to titanium dioxide nanoparticles. Methods: A total of 36 implants were inserted into 18 older New Zealand white male rabbits. They had two different surfaces. The implants Control group was characterized by an acid-etched and sandblasted surface treatment, and the Test implants had an acid-etched and sandblasted surface coated with a silver ion covalently bound to titanium dioxide nanoparticles in the solution. Results: No statistically significant difference of the bone density was evidenced between Control and Test implants at two weeks (p-value = 0.623), four weeks (p-value = 0.339), and eight weeks (p-value = 0.461). Moreover, no statistically significant difference of the bone-implant contact percentage was evidenced between Control and Test implants at two weeks (p-value = 0.938), four weeks (p-value = 0.307), and eight weeks (p-value = 0.294). The effectiveness of the present investigation demonstrated no adverse effects on osseointegration, and no statistically significant differences were observed in the bone density and percentage of bone-implant contact between Test and Control implants at all the experimental time points (two, four, and eight weeks). Conclusions: Titanium implants coated with the silver-anatase solution bind very well to the bone and did not have an adverse effect on the bone tissue in a rabbit model. These facts suggest possible clinical applications for the silver composition.

Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 358
Author(s):  
Javier Aragoneses ◽  
Ana Suárez ◽  
Nansi López-Valverde ◽  
Francisco Martínez-Martínez ◽  
Juan Manuel Aragoneses

The aim of this study was to evaluate the effect of implant surface treatment with carboxyethylphosphonic acid and fibroblast growth factor 2 on the bone–implant interface during the osseointegration period in vivo using an animal model. The present research was carried out in six minipigs, in whose left tibia implants were inserted as follows: eight implants with a standard surface treatment, for the control group, and eight implants with a surface treatment of carboxyethylphosphonic acid and immobilization of FGF-2, for the test group. At 4 weeks after the insertion of the implants, the animals were sacrificed for the histomorphometric analysis of the samples. The means of the results for the implant–bone contact variable (BIC) were 46.39 ± 17.49% for the test group and 34.00 ± 9.92% for the control group; the difference was not statistically significant. For the corrected implant–bone contact variable (BICc), the mean value of the test group was 60.48 ± 18.11%, and that for the control group, 43.08 ± 10.77%; the difference was statistically significant (p-value = 0.035). The new bone formation (BV/TV) showed average results of 27.28 ± 3.88% for the test group and 26.63 ± 7.90% for the control group, meaning that the differences were not statistically significant (p-value = 0.839). Regarding the bone density at the interthread level (BAI/TA), the mean value of the test group was 32.27 ± 6.70%, and that of the control group was 32.91 ± 7.76%, with a p-value of 0.863, while for the peri-implant density (BAP/TA), the mean value of the test group was 44.96 ± 7.55%, and that for the control group was 44.80 ± 8.68%, without a significant difference between the groups. The current research only found a significant difference for the bone–implant contact at the cortical level; therefore, it could be considered that FGF-2 acts on the mineralization of bone tissue. The application of carboxyethylphosphonic acid on the surface of implants can be considered a promising alternative as a biomimetic coating for the immobilization of FGF-2. Despite no differences in the new bone formation around the implants or in the interthread or peri-implant bone density being detected, the biofunctionalization of the implant surface with FGF-2 accelerates the mineralization of the bone–implant interface at the cortical level, thereby reducing the osseointegration period.


2013 ◽  
Vol 39 (5) ◽  
pp. 583-590 ◽  
Author(s):  
Moustafa N. Aboushelib ◽  
Noha A. Salem ◽  
Ahmed L. Abo Taleb ◽  
Naglaa M. Abd El Moniem

This study evaluates osseous healing of selective infiltration-etched (SIE) zirconia implants compared to as-sintered zirconia and titanium implants. Twenty implants of each group were inserted in 40 adult New Zealand white male rabbits. After 4 and 6 weeks, bone blocks containing the implants were retrieved, sectioned, and processed to evaluate bone-implant contact (BIC) and peri-implant bone density. SIE zirconia implants had significantly higher BIC and marginally higher bone density. The results suggest that selective infiltration-etched zirconia implant surface may improve implant osseointegration.


2021 ◽  
Vol 11 (12) ◽  
pp. 5324
Author(s):  
Maria Menini ◽  
Francesca Delucchi ◽  
Domenico Baldi ◽  
Francesco Pera ◽  
Francesco Bagnasco ◽  
...  

(1) Background: Intrinsic characteristics of the implant surface and the possible presence of endotoxins may affect the bone–implant interface and cause an inflammatory response. This study aims to evaluate the possible inflammatory response induced in vitro in macrophages in contact with five different commercially available dental implants. (2) Methods: one zirconia implant NobelPearl® (Nobel Biocare) and four titanium implants, Syra® (Sweden & Martina), Prama® (Sweden & Martina), 3iT3® (Biomet 3i) and Shard® (Mech & Human), were evaluated. After 4 h of contact of murine macrophage cells J774a.1 with the implants, the total RNA was extracted, transcribed to cDNA and the gene expression of the macrophages was evaluated by quantitative PCR (qPCR) in relation to the following genes: GAPDH, YWHAZ, IL1β, IL6, TNFα, NOS2, MMP-9, MMP-8 and TIMP3. The results were statistically analyzed and compared with negative controls. (3) Results: No implant triggered a significant inflammatory response in macrophages, although 3iT3 exhibited a slight pro-inflammatory effect compared to other samples. (4) Conclusions: All the samples showed optimal outcomes without any inflammatory stimulus on the examined macrophagic cells.


Author(s):  
Sigmar Kopp ◽  
Mareike Warkentin ◽  
Ferenc Öri ◽  
Peter Ottl ◽  
Günther Kundt ◽  
...  

AbstractThis study was designed to determine and statistically analyze bone-to-implant contact (BIC) values for human specimens segmented in at least two different locations.Samples of human bone with fractured osseointegrated implants were obtained from six patients. Sections were prepared, dehydrated, and resin infiltrated. Undecalcified bone sections were produced using the thin-section technique according to Donath, ultimately obtaining a section thickness of approximately 20 μm. Fifteen specimens were available for histomorphometry. The bone sections were digitized and analyzed. The bone-to-metal contact (BMC) parameter was determined histomorphometrically. The BMC was returned in terms of the visibly bone-covered implant surfaces as a percentage of the total implant surface shown.The values obtained for the six implants were arranged as six maximum-distance pairs and tested for significance using the t-test for dependent samples. The mean difference in BIC was 11.69±9.79%. The two-sided test showed a significant difference (p=0.033).The accidental or deliberate choice of section plane for a bone-implant block has an influence on the BIC value. To make BIC values more comparable, a standardization of section planes is desirable.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Warwick J. Duncan ◽  
Min-Ho Lee ◽  
Tae-Sung Bae ◽  
Sook-Jeong Lee ◽  
Jennifer Gay ◽  
...  

Spark discharge anodic oxidation forms porous TiO2films on titanium implant surfaces. This increases surface roughness and concentration of calcium and phosphate ions and may enhance early osseointegration. To test this, forty 3.75 mm × 13 mm titanium implants (Megagen, Korea) were placed into healed mandibular postextraction ridges of 10 sheep. There were 10 implants per group: RBM surface (control), RBM + anodised, RBM + anodised + fluoride, and titanium alloy + anodised surface. Resonant frequency analysis (RFA) was measured in implant stability quotient (ISQ) at surgery and at sacrifice after 1-month unloaded healing. Mean bone-implant contact (% BIC) was measured in undemineralised ground sections for the best three consecutive threads. One of 40 implants showed evidence of failure. RFA differed between groups at surgery but not after 1 month. RFA values increased nonsignificantly for all implants after 1 month, except for controls. There was a marked difference in BIC after 1-month healing, with higher values for alloy implants, followed by anodised + fluoride and anodised implants. Anodisation increased early osseointegration of rough-surfaced implants by 50–80%. RFA testing lacked sufficient resolution to detect this improvement. Whether this gain in early bone-implant contact is clinically significant is the subject of future experiments.


2007 ◽  
Vol 33 (2) ◽  
pp. 89-95 ◽  
Author(s):  
Giovanna Iezzi ◽  
Elisabetta Fiera ◽  
Antonio Scarano ◽  
Gabriele Pecora ◽  
Adriano Piattelli

Abstract Little is known about the in vivo healing processes at the interface of implants placed in different grafting materials. For optimal sinus augmentation, a bone graft substitute that can regenerate high-quality bone and enable the osseointegration of load-bearing titanium implants is needed in clinical practice. Calcium sulphate (CaS) is one of the oldest biomaterials used in medicine, but few studies have addressed its use as a sinus augmentation material in conjunction with simultaneous implant placement. The aim of the present study was to histologically evaluate an immediately loaded provisional implant retrieved 7 months after simultaneous placement in a human sinus grafted with CaS. During retrieval bone detached partially from one of the implants which precluded its use for histologic analysis. The second implant was completely surrounded by native and newly formed bone, and it underwent histologic evaluation. Lamellar bone, with small osteocyte lacunae, was present and in contact with the implant surface. No gaps, epithelial cells, or connective tissues were present at the bone–implant interface. No residual CaS was present. Bone–implant contact percentage was 55% ± 8%. Of this percentage, 40% was represented by native bone and 15% by newly formed bone. CaS showed complete resorption and new bone formation in the maxillary sinus; this bone was found to be in close contact with the implant surface after immediate loading.


2007 ◽  
Vol 33 (1) ◽  
pp. 8-12 ◽  
Author(s):  
Sauro Grassi ◽  
Adriano Piattelli ◽  
Daniel S. Ferrari ◽  
Luciene C. Figueiredo ◽  
Magda Feres ◽  
...  

Abstract The aim of this preliminary study was to evaluate the influence of a sandblasted acid-etched surface on bone-implant contact percentage (BIC%) as well as the bone density in the threads area (BD%) in type 4 bone after 2 months of unloaded healing. Five subjects (mean age = 42.6 years) received 2 microimplants each during conventional implant surgery in the posterior maxilla. The microimplants with commercially pure titanium surface (machined) and sandblasted acid-etched surface served as the control and test surfaces, respectively. After a healing period of 2 months, the microimplants and the surrounding tissue were removed and prepared for ground sectioning and histomorphometric analysis. One microimplant with a machined surface was found to be clinically unstable at the time of retrieval. Histometric evaluation indicated mean BIC% was 20.66 ± 14.54% and 40.08 ± 9.89% for machined and sandblasted acid-etched surfaces, respectively (P = .03). The BD% was 26.33 ± 19.92% for machined surface and 54.84 ± 22.77% for sandblasted acid-etched surface (P = .015). Within the limits of this study, the data suggest that the sandblasted acid-etched implant surface presented a higher percentage of bone-implant contact compared with machined surfaces, under unloaded conditions in posterior maxilla after a healing period of 2 months.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Mattia Comotto ◽  
Alessandro Alberto Casazza ◽  
Bahar Aliakbarian ◽  
Valentina Caratto ◽  
Maurizio Ferretti ◽  
...  

The influence of titanium dioxide nanoparticles (pure anatase and 15% N doped anatase) on the growth ofChlorella vulgaris,Haematococcus pluvialis, andArthrospira platensiswas investigated. Results showed that pure anatase can lead to a significant growth inhibition ofC. vulgarisandA. platensis(17.0 and 74.1%, resp.), while forH. pluvialisthe nanoparticles do not cause a significant inhibition. Since in these stress conditions photosynthetic microorganisms can produce antioxidant compounds in order to prevent cell damages, we evaluated the polyphenols content either inside the cells or released in the medium. Although results did not show a significant difference inC. vulgaris, the phenolic concentrations of two other microorganisms were statistically affected by the presence of titanium dioxide. In particular, 15% N doped anatase resulted in a higher production of extracellular antioxidant compounds, reaching the concentration of 65.2 and68.0 mg gDB-1forH. pluvialisandA. platensis, respectively.


2019 ◽  
Vol 43 (1) ◽  
pp. 42-45
Author(s):  
Nida Hamid ◽  
Ravishankar Lingesha Telgi ◽  
Amit Tirth ◽  
Vaibhav Tandon ◽  
Smita Chandra ◽  
...  

Objective: To evaluate the addition of titanium dioxide (TiO2) nanoparticles and cetylpyridinium chloride (CPC) on the compressive strength and antibacterial activity of conventional glass-ionomer cement (GIC). Study design: TiO2 nanoparticles enriched GIC was prepared by adding 3% TiO2 nanoparticles (w/w) into the powder component of conventional GIC. CPC containing GIC was developed by incorporating 1% CPC (w/w) into conventional GIC powder. Samples were segregated into three groups: GIC with 3% TiO2 nanoparticles, GIC with 1% CPC and unmodified conventional GIC. Compressive strength was assessed using the universal testing machine on cylindrical specimens made from each material. Antibacterial activity was assessed by measuring inhibition zones on Mitis Salivarius Bacitracin (MSB) agar inoculated with pure strain of Streptococcus mutans (S. mutans). Results: GIC containing TiO2 nanoparticles exhibited significantly greater compressive strength as compared with CPC and conventional GIC groups (P < 0.01). However, there was no significant difference between the compressive strengths of CPC and conventional GIC group (P >0.05). Antibacterial activity was significantly greater for TiO2 group than conventional GIC (P <0.05). CPC increased the antibacterial activity of conventional GIC, though not significantly. Conclusion: The addition of 3% TiO2 nanoparticles improves the compressive strength of GIC as well as its antibacterial activity against S. mutans.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Vyacheslav Syzrantsev ◽  
Evgenii Paukshtis ◽  
Tatyana Larina ◽  
Yuriy Chesalov ◽  
Sergey Bardakhanov ◽  
...  

A comparative study of the scope and surface properties of alumina (Al2O3) and titanium dioxide (TiO2) nanoparticles, synthesized using different methods, was carried out using Fourier-transform infrared spectroscopy (FTIR), ultraviolet UV-Vis diffuse reflection spectroscopy (UV-Vis DRS), and Raman spectroscopy, as well as X-ray diffraction methods. It is shown that the differences in the synthesis methods can change the surface properties of the nanoparticles, while maintaining the phase composition of the material. The nanoparticles of each material are shown to exhibit unexpected properties. In particular, the special luminescence characteristics of TiO2, a photon-energy shift from the rutile region into that region typical for the anatase, and a significant difference in the Lewis center concentration values for the alumina γ-phase were observed. This variation in the properties indicates the necessity to involve a wider range of analysis techniques and the importance of precisely characterizing the surface properties. To identify those nanoparticle functional properties that determine their interactions with other materials, a comprehensive study of their phase compositions and surface properties must be completed.


Sign in / Sign up

Export Citation Format

Share Document