scholarly journals Synthesis and Characterization of Hybrid Metal Zeolitic Imidazolate Framework Membrane for Efficient H2/CO2 Gas Separation

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5009
Author(s):  
Po-Hsueh Chang ◽  
Yuan-Tse Lee ◽  
Cheng-Hsiung Peng

In this paper, we propose mixed metal ions in the node of the zeolitic imidazolate framework (ZIF) structure. The hybrid metal ZIF is formed for the gas separation of hydrogen and carbon dioxide. In the first stage, the nanoparticles were prepared as a coating on a substrate, and acting as secondary growing nuclei. The hybrid metal ZIF structures were characterized by X-ray diffractometry (XRD) and Fourier transform infrared spectroscopy (FTIR). N2 adsorption–desorption isotherms determined surface area, and scanning electron microscopy (SEM) was used to observe the microstructure and surface morphology. The hybrid metal ZIF-8-67 powder had the largest surface area (1260.40 m2 g−1), and the nanoparticles (100 nm) could be fully dense-coated on the substrate to benefit the subsequent membrane growth. In the second stage, we prepared the hybrid metal ZIF-8-67 membrane on the pre-seeding substrate with mixed metal nanoparticles of cobalt and zinc, by the microwave hydrothermal method. Cobalt ions were identified in the tetrahedral coordination through UV–Vis, and the membrane structure and morphology were determined by XRD and SEM. Finally, a gas permeation analyzer (GPA) was used to determine the gas separation performance of the hybrid metal ZIF-8-67 membrane. We successfully introduced zinc ions and cobalt ions into the ZIF structure, where cobalt had a strong interaction with CO2. Therefore, GPA analysis showed an excellent H2/CO2 separation factor due to lower CO2 permeability. The CO2 permeance was ~0.65 × 10−8 mol m−2 s−1 Pa−1, and the separation factors for H2/CO2 and H2/N2 were 9.2 and 2.9, respectively. Our results demonstrate that the hybrid metal ZIF-8-67 membrane has a superior H2/CO2 separation factor, which can be attributed to its very high specific surface area and structure. Based on the above, hybrid metal ZIF-8-67 membranes are expected to be applied in hydrogen or carbon dioxide gas separation and purification.

2017 ◽  
Vol 8 (1) ◽  
pp. 325-333 ◽  
Author(s):  
Fernando Cacho-Bailo ◽  
Ismael Matito-Martos ◽  
Julio Perez-Carbajo ◽  
Miren Etxeberría-Benavides ◽  
Oğuz Karvan ◽  
...  

A zeolitic imidazolate framework two-layered membrane approach is simulated and experimentally validated to improve the pre-combustion gas separation.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 582
Author(s):  
Fernando Pardo ◽  
Sergio V. Gutiérrez-Hernández ◽  
Carolina Hermida-Merino ◽  
João M. M. Araújo ◽  
Manuel M. Piñeiro ◽  
...  

Membrane technology can play a very influential role in the separation of the constituents of HFC refrigerant gas mixtures, which usually exhibit azeotropic or near-azeotropic behavior, with the goal of promoting the reuse of value-added compounds in the manufacture of new low-global warming potential (GWP) refrigerant mixtures that abide by the current F-gases regulations. In this context, the selective recovery of difluorometane (R32, GWP = 677) from the commercial blend R410A (GWP = 1924), an equimass mixture of R32 and pentafluoroethane (R125, GWP = 3170), is sought. To that end, this work explores for the first time the separation performance of novel mixed-matrix membranes (MMMs) functionalized with ioNanofluids (IoNFs) consisting in a stable suspension of exfoliated graphene nanoplatelets (xGnP) into a fluorinated ionic liquid (FIL), 1-ethyl-3-methylpyridinium perfluorobutanesulfonate ([C2C1py][C4F9SO3]). The results show that the presence of IoNF in the MMMs significantly enhances gas permeation, yet at the expense of slightly decreasing the selectivity of the base polymer. The best results were obtained with the MMM containing 40 wt% IoNF, which led to an improved permeability of the gas of interest (PR32 = 496 barrer) with respect to that of the neat polymer (PR32 = 279 barrer) with a mixed-gas separation factor of 3.0 at the highest feed R410A pressure tested. Overall, the newly fabricated IoNF-MMMs allowed the separation of the near-azeotropic R410A mixture to recover the low-GWP R32 gas, which is of great interest for the circular economy of the refrigeration sector.


2017 ◽  
Vol 733 ◽  
pp. 42-46
Author(s):  
Habiba Shehu ◽  
Edidiong Okon ◽  
Edward Gobina

Shuttle tankers are becoming more widely used in deep water installations as a means of transporting crude oil to storage plants and refineries. The emissions of hydrocarbon vapours arise mainly during loading and offloading operations. Experiments have been carried out on the use of polyurethane/zeolite membrane on an alumina support for the separation of methane from carbon dioxide and oxygen. The physical properties of the membrane were investigated by FTIR. Single gas permeation tests with methane, propane, oxygen and carbon dioxide at a temperature of 293 K and pressure ranging from 0.1 to 1.0 x 10-5 Pa were carried out. The molar flux of the gases through the membrane was in the range of 3 x 10-2 to 1 x 10-1 molm-2s-1. The highest separation factor of CH4/CO2 and CH4/O2 and CH4/C3H8 was determined to be 1.7, 1.7 and 1.6 respectively.


2020 ◽  
Vol 10 (2) ◽  
pp. 213-219
Author(s):  
Putu Doddy Sutrisna ◽  
Ronaldo Pangestu Hadi ◽  
Jonathan Siswanto ◽  
Giovanni J Prabowo

Biogas is a renewable energy that has been explored widely in Indonesia to substitute non-renewable energy. However, the presence of certain gas, such as carbon dioxide (CO2), can decrease the calorific value and generate greenhouse gas. Hence, the separation of CO2 from methane (CH4) occurs as a crucial step to improve the utilization of biogas. The separation of CH4/CO2 can be conducted using a polymeric membrane that needs no chemical, hence considered as an environmentally friendly technique. However, the utilization of polymeric membrane in gas separation processes is hampered by the trade-off between gas throughput and selectivity. To solve this problem, the incorporation of inorganic particles, such as Zeolitic Imidazolate Framework-8 (ZIF-8) particles, into the polymer matrix to improve the gas separation performance of the membrane has been conducted recently. In this research, ZIF-8 has been incorporated into Polysulfone matrix to form ZIF-8/Polysulfone-based membrane by simple blending and phase inversion techniques in flat sheet configuration. The pure gas permeation tests showed an increase in gas permeability (26 Barrer compared to 17 Barrer) after the inclusion of ZIF-8 particles with a slight decrease in CO2/CH4selectivity for particle loading more than 15wt. %. Therefore, the membrane with 15wt. % of particles showed the best performance in terms of gas selectivity. This result was due to the aggregation of ZIF-8 particles at particle loading higher than 15wt. %. Chemical analysis indicated an interaction between filler and polymer, and there were increases in the degree of crystallinity after the incorporation of ZIF-8.


2020 ◽  
pp. 095400832095970
Author(s):  
Yunwu Yu ◽  
Peng Lin ◽  
Ye Zhao ◽  
Changwei Liu ◽  
Changwei Xu ◽  
...  

Fluorinated polyimide and PVA blending membranes were prepared by aqueous solution casting. We chose a poly (amic acid) ammonium salt (PAAS) in aqueous solution based on a novel green strategy as the PI precursor. The blending membranes were characterized by ATR-FTIR, DSC, TGA and gas permeation measurement. The ATR-FTIR analysis revealed that the imidization reaction of 6FPI based on aqueous precursor was completed at 180°C and hydrogen bonds formed between PVA and 6FPI. 6FPI showed good compatibility with PVA segment in blending membranes without obvious separated phase structure. The blending membranes showed high separation properties, for blending with 6FPI the gas separation performance stability was improved due to the hydrogen bonds between hydroxyl groups of PVA and carbonyl groups of 6FPI, and the rigid structure of 6FPI. At high operating pressure 10 bar, the CO2 permeability and CO2/N2 selectivity remained rather high. Using water as the solvent in the PAAS synthesis and membrane preparation is more environmentally friendly and less costly.


2017 ◽  
Vol 30 (9) ◽  
pp. 1064-1074 ◽  
Author(s):  
Xin Fu ◽  
Xueqin Li ◽  
Ruili Guo ◽  
Jianshu Zhang ◽  
Xingzhong Cao

A series of block copolymer membranes was designed using polyetheramine (PEA) and methyl-containing polyisophthalamides (MPA) for the separation of carbon dioxide (CO2)/methane (CH4) gas mixtures. PEA consists of abundant ethylene oxide units, which show good affinity with CO2, and MPA consists of methyl (Me) substituents, which can increase the fractional free volume of block copolymer membranes. The Me substituents were introduced into MPA via polymerization from isophthaloyl dichloride (IPC), 2,5-dimethyl-1,4-phenylenediamine (DPD), and 4,4′-bis(3-aminophenoxy)diphenyl sulfone (BADS). Therefore, the CO2 solubility and diffusivity in the membranes could be improved by tailoring the PEA/MPA mass ratio and BADS/DPD mole ratio, respectively. The membrane with a PEA/MPA mass ratio of 6/4 and a BADS/DPD mole ratio of 1/10 exhibited optimum CO2 separation performance with a CO2 permeability of 629 Barrer and CO2/CH4 selectivity of 23 at 2 × 105 Pa and 25°C.


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2361 ◽  
Author(s):  
Xuyan Song ◽  
Jialin Yu ◽  
Min Wei ◽  
Ran Li ◽  
Xi Pan ◽  
...  

Ionic-liquid-functionalized zeolitic imidazolate frameworks (ZIF) were synthesized using the co-ligands of 2-methylimidazole and amine-functionalized ionic liquid during the formation process of frameworks. The resulting ionic-liquid-modified ZIF had a specific surface area of 1707 m2·g−1 with an average pore size of about 1.53 nm. Benefiting from the large surface area and the high solubility of carbon dioxide in ionic-liquid moieties, the synthesized materials exhibited a carbon dioxide adsorption capacity of about 24.9 cm3·g−1, whereas it was 16.3 cm3·g−1 for pristine ZIF at 25 °C under 800 mmHg. The results demonstrate that the modification of porous materials with ionic liquids could be an effective way to fabricate solid sorbents for carbon dioxide adsorption.


Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 708
Author(s):  
Soong‐Seok Yoon ◽  
Hyun‐Kyung Lee ◽  
Se‐Ryeong Hong

In this study, we mixed the zeolitic imidazolate framework-7 (ZIF-7) with poly(ether-b-amide)® 2533 (Pebax-2533) and used it as a selective layer for a composite membrane. We prepared the composite membrane’s substrate using polysulfone (PSf), adjusted its pore size using polyethylene glycol (PEG), and applied polydimethylsiloxane (PDMS) to the gutter layer and the coating layer. Then, we investigated the membrane’s properties of gases by penetrating a single gas (N2, CO2) into the membrane. We identified the peaks and geometry of ZIF-7 to determine if it had been successfully synthesized. We confirmed that ZIF-7 had a BET surface area of 303 m2/g, a significantly high Langmuir surface area of 511 m2/g, and a high CO2/N2 adsorption selectivity of approximately 50. Considering the gas permeation, with ZIF-7 mixed into Pebax-2533, N2 permeation decreased from 2.68 GPU in a pure membrane to 0.43 GPU in the membrane with ZIF-7 25 wt%. CO2 permeation increased from 18.43 GPU in the pure membrane to 26.22 GPU in the ZIF-7 35 wt%. The CO2/N2 ideal selectivity increased from 6.88 in the pure membrane to 50.43 in the ZIF-7 25 wt%. Among the membranes, Pebax-2533/ZIF-7 25 wt% showed the highest permeation properties and the characteristics of CO2-friendly ZIF-7.


Sign in / Sign up

Export Citation Format

Share Document