scholarly journals Microstructural, Mechanical, Corrosion and Cytotoxicity Characterization of Porous Ti-Si Alloys with Pore-Forming Agent

Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5607
Author(s):  
Andrea Školáková ◽  
Jana Körberová ◽  
Jaroslav Málek ◽  
Dana Rohanová ◽  
Eva Jablonská ◽  
...  

Titanium and its alloys belong to the group of materials used in implantology due to their biocompatibility, outstanding corrosion resistance and good mechanical properties. However, the value of Young’s modulus is too high in comparison with the human bone, which could result in the failure of implants. This problem can be overcome by creating pores in the materials, which, moreover, improves the osseointegration. Therefore, TiSi2 and TiSi2 with 20 wt.% of the pore-forming agent (PA) were prepared by reactive sintering and compared with pure titanium and titanium with the addition of various PA content in this study. For manufacturing implants (especially augmentation or spinal replacements), titanium with PA seemed to be more suitable than TiSi2 + 20 wt.% PA. In addition, titanium with 30 or 40 wt.% PA contained pores with a size allowing bone tissue ingrowth. Furthermore, Ti + 30 wt.% PA was more suitable material in terms of corrosion resistance; however, its Young’s modulus was higher than that of the human bone while Ti + 40 wt.% PA had a Young’s modulus close to the human bone.

2011 ◽  
Vol 217-218 ◽  
pp. 1191-1196
Author(s):  
Peng Zhang ◽  
Yuan Chen Qi ◽  
Wei Li

Porous titanium compacts were fabricated by powder metallurgy using cold isostatic press with and without pore forming agents. Their microstructure and mechanical properties were investigated in this study. These alloy powders were sintered under 1300°C in vacuum of 10-3 Pa for 2h, followed by furnace cooling. Young’s modulus of sintered Ti could equal that of human’s dense bones. It was found that the strength of porous Ti enhanced by increasing the pressure or decreasing the amounts of pore forming agents. We prepared a porous pure Ti with 30wt.% NH4HCO3 as pore forming agents whose modulus was near to the human cortical bone, as compared in the range from 10 to 30GPa of Young’s modulus for human bone.


2009 ◽  
Vol 631-632 ◽  
pp. 199-204 ◽  
Author(s):  
Yoshimi Watanabe ◽  
Yoshimi Iwasa ◽  
Hisashi Sato ◽  
Akira Teramoto ◽  
Koji Abe

Ti and Ti alloys are widely used as metallic implants, because of their good mechanical properties and nontoxic behavior. However, they have problems as the implant-materials, namely, high Young’s modulus comparing that of bone and low bonding ability with bone. There is a need to develop the Ti and Ti alloys with lower Young’s modulus and good bonding ability. In previous study, Ti composite containing biodegradable poly-L-lactic-acid (PLLA) fiber has been fabricated to improve these problems. However, this composite has low strength because of the imperfect sintering of Ti matrix. To improve its strength, sintering of Ti matrix should be completed. In this study, Ti-NaCl composite material was fabricated by spark plasma sintering (SPS) method using powder mixture of Ti and NaCl to complete the sintering of Ti matrix. To obtain porous Ti samples, Ti-NaCl composite were put into hot water of 100 oC. The porous Ti was dipped into PLLA melt in order to introduce PLLA into the pores of porous Ti. Finally, Ti-PLLA composite was obtained, and PLLA plays a role as reinforcement of Ti matrix. It was found that the Ti-PLLA composite has gradient structure and mechanical properties.


2021 ◽  
Author(s):  
MICHAEL N. OLAYA ◽  
SAGAR PATIL ◽  
GREGORY M. ODEGARD ◽  
MARIANNA MAIARÙ

A novel approach for characterization of thermosetting epoxy resins as a function of the degree of cure is presented. Density, cure kinetics, tensile strength, and Young’s modulus are experimentally characterized across four mixing ratios of DGEBF/DETDA epoxy. Dynamic differential scanning calorimetry (DSC) is used to characterize parameters for a Prout-Thompkins kinetic model unique to each mixing ratio case through a data fitting procedure. Tensile strength and Young’s modulus are then characterized using stress-strain data extracted from quasi-static, uniaxial tension tests at room temperature. Strains are measured with the 2-D digital image correlation (DIC) optical strain measurement technique. Strength tends to increase as amine content use in the formulation increases. The converse trend is observed for Young’s modulus. Density measurements also reveal an inverse relationship with amine content.


Author(s):  
Kyong Min Kim ◽  
Yazan Al-Zain ◽  
Akiko Yamamoto ◽  
Amirah H. Daher ◽  
Ahmad T. Mansour ◽  
...  

Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 931 ◽  
Author(s):  
Patrycja Sochacka ◽  
Andrzej Miklaszewski ◽  
Kamil Kowalski ◽  
Mieczyslaw Jurczyk

In this paper, binary β type Ti-23 at.% Mo alloys were obtained by arc melting as well as by mechanical alloying and powder metallurgical process with cold powder compaction and sintering or, interchangeably, hot pressing. The influence of the synthesis method on the microstructure and properties of bulk alloys were studied. The produced materials were characterized by an X-ray diffraction technique, scanning electron microscopy and chemical composition determination. Young’s modulus was evaluated with nanoindentation testing method based on the Oliver and Pharr approach. The mechanically alloyed Ti-23 at.% Mo powders, after inductively hot-pressed at 800 °C for 5 min, allowed the formation of single Ti(β) phase alloy. In this case, Young’s modulus and Vickers hardness were 127 GPa and 454 HV0.3, respectively. Among the examined materials, the porous (55%) single-phase scaffold showed the lowest indentation modulus (69.5 GPa). Analytical approach performed in this work focuses also on the surface properties. The estimation includes the corrosion resistance analyzed in the potentiodynamic test, and also some wettability properties as a contact angle, and surface free energy values measured in glycerol and diiodomethane testing fluids. Additionally, surface modification of processed material by micro-arc oxidation and electrophoretic deposition on the chosen samples was investigated. Proposed procedures led to the formation of apatite and fluorapatite layers, which influence both the corrosion resistance and surface wetting properties in comparison to unmodified samples. The realized research shows that a single-phase ultrafine-grained Ti-23 at.% Mo alloy for medical implant applications can be synthesized at a temperature lower than the transition point by the application of hot pressing of mechanically alloyed powders. The material processing, that includes starting powder preparation, bulk alloy transformation, and additional surface treatment functionalization, affect final properties by the obtained phase composition and internal structure.


Sensors ◽  
2015 ◽  
Vol 15 (2) ◽  
pp. 2763-2773 ◽  
Author(s):  
Yang Zhao ◽  
Deyong Chen ◽  
Yana Luo ◽  
Feng Chen ◽  
Xiaoting Zhao ◽  
...  

Author(s):  
Zhiqiang Cao ◽  
Tong-Yi Zhang ◽  
Xin Zhang

Plasma-enhanced chemical vapor deposited (PECVD) silane-based oxides (SiOx) have been widely used in both microelectronics and MEMS (MicroElectroMechanical Systems) to form electrical and/or mechanical components. In this paper, a novel nanoindentation-based microbridge testing method is developed to measure both the residual stresses and Young’s modulus of PECVD SiOx films on silicon wafers. Theoretically, we considered both the substrate deformation and residual stress in the thin film and derived a closed formula of deflection versus load. The formula fitted the experimental curves almost perfectly, from which the residual stresses and Young’s modulus of the film were determined. Experimentally, freestanding microbridges made of PECVD SiOx films were fabricated using the silicon undercut bulk micromachining technique. The results showed that the as-deposited PECVD SiOx films had a residual stress of −155±17 MPa and a Young’s modulus of 74.8±3.3 GPa.


Sign in / Sign up

Export Citation Format

Share Document