scholarly journals 2D Dynamic Directional Amplification (DDA) in Phononic Metamaterials

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2302
Author(s):  
Moris Kalderon ◽  
Andreas Paradeisiotis ◽  
Ioannis Antoniadis

Phononic structures with unit cells exhibiting Bragg scattering and local resonance present unique wave propagation properties at wavelengths well below the regime corresponding to bandgap generation based on spatial periodicity. However, both mechanisms show certain constraints in designing systems with wide bandgaps in the low-frequency range. To face the main practical challenges encountered in such cases, including heavy oscillating masses, a simple dynamic directional amplification (DDA) mechanism is proposed as the base of the phononic lattice. This amplifier is designed to present the same mass and use the same damping element as a reference two-dimensional (2D) phononic metamaterial. Thus, no increase in the structure mass or the viscous damping is needed. The proposed DDA can be realized by imposing kinematic constraints to the structure’s degrees of freedom (DoF), improving inertia and damping on the desired direction of motion. Analysis of the 2D lattice via Bloch’s theory is performed, and the corresponding dispersion relations are derived. The numerical results of an indicative case study show significant improvements and advantages over a conventional phononic structure, such as broader bandgaps and increased damping ratio. Finally, a conceptual design indicates the usage of the concept in potential applications, such as mechanical filters, sound and vibration isolators, and acoustic waveguides.

2019 ◽  
Vol 116 (52) ◽  
pp. 26407-26413 ◽  
Author(s):  
Yichao Tang ◽  
Yanbin Li ◽  
Yaoye Hong ◽  
Shu Yang ◽  
Jie Yin

Kirigami (cutting and/or folding) offers a promising strategy to reconfigure metamaterials. Conventionally, kirigami metamaterials are often composed of passive cut unit cells to be reconfigured under mechanical forces. The constituent stimuli-responsive materials in active kirigami metamaterials instead will enable potential mechanical properties and functionality, arising from the active control of cut unit cells. However, the planar features of hinges in conventional kirigami structures significantly constrain the degrees of freedom (DOFs) in both deformation and actuation of the cut units. To release both constraints, here, we demonstrate a universal design of implementing folds to reconstruct sole-cuts–based metamaterials. We show that the supplemented folds not only enrich the structural reconfiguration beyond sole cuts but also enable more DOFs in actuating the kirigami metasheets into 3 dimensions (3D) in response to environmental temperature. Utilizing the multi-DOF in deformation of unit cells, we demonstrate that planar metasheets with the same cut design can self-fold into programmable 3D kirigami metastructures with distinct mechanical properties. Last, we demonstrate potential applications of programmable kirigami machines and easy-turning soft robots.


2018 ◽  
Vol 12 (3) ◽  
pp. 181-187
Author(s):  
M. Erkan Kütük ◽  
L. Canan Dülger

An optimization study with kinetostatic analysis is performed on hybrid seven-bar press mechanism. This study is based on previous studies performed on planar hybrid seven-bar linkage. Dimensional synthesis is performed, and optimum link lengths for the mechanism are found. Optimization study is performed by using genetic algorithm (GA). Genetic Algorithm Toolbox is used with Optimization Toolbox in MATLAB®. The design variables and the constraints are used during design optimization. The objective function is determined and eight precision points are used. A seven-bar linkage system with two degrees of freedom is chosen as an example. Metal stamping operation with a dwell is taken as the case study. Having completed optimization, the kinetostatic analysis is performed. All forces on the links and the crank torques are calculated on the hybrid system with the optimized link lengths


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Samuel F. Asokanthan ◽  
Soroush Arghavan ◽  
Mohamed Bognash

Effect of stochastic fluctuations in angular velocity on the stability of two degrees-of-freedom ring-type microelectromechanical systems (MEMS) gyroscopes is investigated. The governing stochastic differential equations (SDEs) are discretized using the higher-order Milstein scheme in order to numerically predict the system response assuming the fluctuations to be white noise. Simulations via Euler scheme as well as a measure of largest Lyapunov exponents (LLEs) are employed for validation purposes due to lack of similar analytical or experimental data. The response of the gyroscope under different noise fluctuation magnitudes has been computed to ascertain the stability behavior of the system. External noise that affect the gyroscope dynamic behavior typically results from environment factors and the nature of the system operation can be exerted on the system at any frequency range depending on the source. Hence, a parametric study is performed to assess the noise intensity stability threshold for a number of damping ratio values. The stability investigation predicts the form of threshold fluctuation intensity dependence on damping ratio. Under typical gyroscope operating conditions, nominal input angular velocity magnitude and mass mismatch appear to have minimal influence on system stability.


1968 ◽  
Vol 25 (7) ◽  
pp. 1441-1452 ◽  
Author(s):  
Joseph D. Richard

A series of tests were conducted to determine the effectiveness of pulsed low-frequency acoustic signals for attracting fishes. The acoustic signals were contrived to simulate the hydrodynamically generated disturbances normally associated with active predation. Underwater television was used to observe fish arrivals during both control and test periods. Demersal predatory fishes were successfully attracted although they habituated rapidly to the acoustic stimulus. Members of the families Serranidae, Lutjanidae, and Pomadasyidae were particularly well represented among the fishes attracted. Sharks were also attracted in considerable numbers. Herbivorous reef fishes, although common around the test site, were not attracted. Possible relationships between the test results and the hearing capabilities of fishes are discussed. It is concluded that acoustic attraction techniques have potential applications in certain existing commercial fisheries.


2021 ◽  
Vol 11 (2) ◽  
pp. 492
Author(s):  
Levente Rácz ◽  
Bálint Németh

Exceeding the electric field’s limit value is not allowed in the vicinity of high-voltage power lines because of both legal and safety aspects. The design parameters of the line must be chosen so that such cases do not occur. However, analysis of several operating power lines in Europe found that the electric field strength in many cases exceeds the legally prescribed limit for the general public. To illustrate this issue and its importance, field measurement and finite element simulation results of the low-frequency electric field are presented for an active 400 kV power line. The purpose of this paper is to offer a new, economical expert system based on dynamic line rating (DLR) that utilizes the potential of real-time power line monitoring methods. The article describes the expert system’s strengths and benefits from both technical and financial points of view, highlighting DLR’s potential for application. With our proposed expert system, it is possible to increase a power line’s safety and security by ensuring that the electric field does not exceed its limit value. In this way, the authors demonstrate that DLR has other potential applications in addition to its capacity-increasing effect in the high voltage grid.


Author(s):  
Patrick Stahl ◽  
G. Nakhaie Jazar

Non-smooth piecewise functional isolators are smart passive vibration isolators that can provide effective isolation for high frequency/low amplitude excitation by introducing a soft primary suspension, and by preventing a high relative displacement in low frequency/high amplitude excitation by introducing a relatively damped secondary suspension. In this investigation a linear secondary suspension is attached to a nonlinear primary suspension. The primary is assumed to be nonlinear to model the inherent nonlinearities involved in real suspensions. However, the secondary suspension comes into action only during a short period of time, and in mall domain around resonance. Therefore, a linear assumption for the secondary suspension is reasonable. The dynamic behavior of the system subject to a harmonic base excitation has been analyzed utilizing the analytic results derived by applying the averaging method. The analytic results match very well in the transition between the two suspensions. A sensitivity analysis has shown the effect of varying dynamic parameters in the steady state behavior of the system.


Parasitology ◽  
2011 ◽  
Vol 138 (9) ◽  
pp. 1176-1182 ◽  
Author(s):  
C. A. RAUQUE ◽  
R. A. PATERSON ◽  
R. POULIN ◽  
D. M. TOMPKINS

SUMMARYThere is a gap in our understanding of the relative and interactive effects of different parasite species on the same host population. Here we examine the effects of the acanthocephalan Acanthocephalus galaxii, an unidentified cyclophyllidean cestode, and the trematodes Coitocaecum parvum and Microphallus sp. on several fitness components of the amphipod Paracalliope fluviatilis, using a combination of infection surveys and both survival and behavioural trials. In addition to significant relationships between specific parasites and measures of amphipod survival, maturity, mating success and behaviour, interactions between parasite species with respect to amphipod photophilia were also significant. While infection by either A. galaxii or C. parvum was associated with increased photophilia, such increases were negated by co-infection with Microphallus sp. We hypothesize that this is due to the more subtle manipulative effect of A. galaxii and C. parvum being impaired by Microphallus sp. We conclude that the low frequency at which such double infections occur in our sampled population means that such interactions are unlikely to be important beyond the scale of the host individual. Whether or not this is generally true, implying that parasitological models and theory based on single parasite species studies do generally hold, requires cross-species meta-analytical studies.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1703
Author(s):  
Michael Coja ◽  
Leif Kari

A waveguide model for a pre-compressed cylindrical natural rubber vibration isolator is developed within a wide frequency range—20 to 2000 Hz—and for a wide pre-compression domain—from vanishing to the maximum in service, that is 20%. The problems of simultaneously modeling the pre-compression and frequency dependence are solved by applying a transformation of the pre-compressed isolator into a globally equivalent linearized, homogeneous, and isotropic form, thereby reducing the original, mathematically arduous, and complex problem into a vastly simpler assignment while using a straightforward waveguide approach to satisfy the boundary conditions by mode-matching. A fractional standard linear solid is applied as the visco-elastic natural rubber model while using a Mittag–Leffler function as the stress relaxation function. The dynamic stiffness is found to depend strongly on the frequency and pre-compression. The former is resulting in resonance phenomena such as peaks and troughs, while the latter exhibits a low-frequency magnitude stiffness increase in addition to peak and trough shifts with increased pre-compressions. Good agreement with nonlinear finite element results is obtained for the considered frequency and pre-compression range in contrast to the results of standard waveguide approaches.


Author(s):  
Luigi Carassale ◽  
Mirko Maurici

The component mode synthesis based on the Craig-Bampton method has two strong limitations that appear when the number of the interface degrees of freedom is large. First, the reduced-order model obtained is overweighed by many unnecessary degrees of freedom. Second, the reduction step may become extremely time consuming. Several interface reduction techniques addressed successfully the former problem, while the latter remains open. In this paper we tackle this latter problem through a simple interface-reduction technique based on an a-priory choice of the interface modes. An efficient representation of the interface displacement field is achieved adopting a set of orthogonal basis functions determined by the interface geometry. The proposed method is compared with other existing interface reduction methods on a case study regarding a rotor blade of an axial compressor.


Author(s):  
Reed A. Johnson ◽  
John J. O’Neill ◽  
Rodney L. Dockter ◽  
Timothy M. Kowalewski

Bioprinting technology has been rapidly increasing in popularity in the field of tissue engineering. Potential applications include tissue or organ regeneration, creation of biometric multi-layered skin tissue, and burn wound treatment [1]. Recent work has shown that living cells can be successfully applied using inkjet heads without damaging the cells [2]. Electrostatically driven inkjet systems have the benefit of not generating significant heat and therefore do not damage the cell structure. Inkjets have the additional benefit of depositing small droplets with micrometer resolution and therefore can be used to build up tissue like structures. Previous attempts at tracking and drawing on a hand include either direct contact with the hand [3] or tracking the hand only in two degrees of freedom [4]. In this work we present an approach to track a hand with three degrees of freedom and accurately apply a substance contact free to the hand in a desired pattern using a bioprinting compatible inkjet. The third degree of freedom, in this case depth from the hand surface, provides improved control over the distance between the inkjet head and object, thus increasing deposition accuracy.


Sign in / Sign up

Export Citation Format

Share Document