scholarly journals Charpy Impact Behavior of a Novel Stainless Steel Powder Wire Mesh Composite Porous Plate

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2924
Author(s):  
Chaozhong Li ◽  
Zhaoyao Zhou

A novel powder wire mesh composite porous plate (PWMCPP) was fabricated with 304 stainless steel powders and wire mesh as raw materials by vacuum solid-state sintering process using self-developed composite rolling mill of powder and wire mesh. The effects of different mesh volume fractions, mesh diameters, and sintering temperatures on the pore structure and Charpy impact properties of PWMCPPs were studied. The results show that PWMCPPs have different shapes and sizes of micropores. Impact toughness of PWMCPPs decreases with increasing wire mesh volume fraction, and increases first and then decreases with increasing wire mesh diameter, and increases with increasing sintering temperature. Among them, the sintering temperature has the most obvious effect on the impact toughness of PWMCPPs, when the sintering temperature increased from 1160 °C to 1360 °C, the impact toughness increased from 39.54 J/cm2 to 72.95 J/cm2, with an increased ratio of 84.5%. The tearing between layers, the fracture of the metallurgical junction, and the fracture of wire mesh are the main mechanisms of impact fractures of the novel PWMCPPs.

2013 ◽  
Vol 395-396 ◽  
pp. 284-288 ◽  
Author(s):  
Zu Rui Zhang ◽  
Zhen Ye Zhao ◽  
Chun Zhi Li ◽  
Zhou Hua Jiang ◽  
Hua Bing Li

This paper investigates the effects of aging precipitates on the mechanical and corrosion resistance properties of 18Cr-18Mn-2Mo-0.96N super high nitrogen austenitic stainless steel (HNS) through Vickers hardness, Charpy impact, tensile and electrical chemical methods. The probable affected mechanism is discussed by optical microscope (OM) and transmission electron microscopy (TEM). The results are presented as follow: the initial TTP curve with 0.05% precipitates volume fraction presents C type which has a nose temperature at 850°C with an incubation period for 60s. The precipitates increase with prolonging aging time to 40%. The HV results of aged HNS present firstly decrease then increase, the relevant yield strength firstly increase then decrease with increasing the aging time. Meanwhile, the impact energy, ultimate tensile strength and elongation are deteriorated significantly because of the formation and growth of cellular Cr2N and χ phase with concomitant increased amount of intergranular Cr2N. The IGC susceptibility increases and the pitting corrosion potentials decrease because of the Cr, N and Mo depletion through the formation of intergranular, cellular Cr2N and intermetallic χ precipitates by aging treatments.


2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Zhiwei Chen ◽  
Caifu Qian ◽  
Guoyi Yang ◽  
Xiang Li

In this paper, a series of impact tests on S30403 austenitic stainless steel at 20/−196/−269 °C were performed to determine the effects of cryogenic temperatures on the material properties. Both base plate and welded joint including weld and heat-affected zone were tested to obtain the Charpy impact energy KV2 and lateral expansion rate at the cross section. It was found that when the test temperature decreased from 20 °C to −196 °C or −269 °C, both the Charpy impact energy KV2 at the base plate and welded joint decreased drastically. Specifically, the impact energy KV2 decreased by 20% at the base plate and decreased by 54% at the welded joint from 20 °C to −196 °C, but the impact energy of base plate and welded joint did not decrease, even increased when test temperature decreased from −196 °C to −269 °C. Either at 20 °C or −196 °C, the impact energy KV2 with 5 × 10 × 55 mm3 specimens was about 0.53 times that of the 7.5 × 10 × 55 mm3 specimens, much lower than 2/3, the ratio of two specimens’ cross section areas.


2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Misbahu A Hayatu ◽  
Emmanuel T Dauda ◽  
Ola Aponbiede ◽  
Kamilu A Bello ◽  
Umma Abdullahi

There is a growing interest for novel materials of dissimilar metals due to higher requirements needed for some critical engineering applications. In this research, different dissimilar weld joints of high strength low alloy (HSLA) and 316 austenitic stainless steel grades were successfully produced using shielded metal arc welding (SMAW) process with 316L-16 and E7018 electrodes. Five variations of welding currents were employed within the specified range of each electrode. Other welding parameters such as heat inputs, welding speeds, weld sizes, arc voltages and time of welding were also varied. Specimens for different weld joint samples were subjected to microstructural studies using optical and scanning electron microscopes. The impact toughness test was also conducted on the samples using Izod impact testing machine. The analysis of the weld microstructures indicated the presence of type A and AF solidification patterns of austenitic stainless steels. The results further showed that the weld joints consolidated with E7018 electrode presented comparatively superior impact energy to the weldments fabricated by 316L-16 electrode. The optimum impact energy of E7018-weld joints (51J) was attained at higher welding heat inputs while that of 316L-16-weld joints (35J) was achieved at lower welding heat inputs, which are necessary requirements for the two electrodes used in the experiment. Hence, the dissimilar weld joints investigated could meet requirement for engineering application in offshore and other critical environments.Keywords—Dissimilar metal weld, heat input, impact toughness, microstructures


2021 ◽  
Vol 1016 ◽  
pp. 42-49
Author(s):  
Kook Soo Bang ◽  
Joo Hyeon Cha ◽  
Kyu Tae Han ◽  
Hong Chul Jeong

The present work investigated the effects of Al, Si, and N content on the impact toughness of the coarse-grained heat-affected zone (CGHAZ) of Ti-containing low-carbon steel. Simulated CGHAZ of differing Al, Si, and N contents were prepared, and Charpy impact toughness was determined. The results were interpreted in terms of microstructure, especially martensite-austenite (M-A) constituent. All elements accelerated ferrite transformation in CGHAZ but at the same time increased the amount of M-A constituent, thereby deteriorating CGHAZ toughness. It is believed that Al, Si, and free N that is uncombined with Ti retard the decomposition of austenite into pearlite and increase the carbon content in the last transforming austenite, thus increasing the amount of M-A constituent. Regardless of the amount of ferrite in CGHAZ, its toughness decreased linearly with an increase of M-A constituent in this experiment, indicating that HAZ toughness is predominantly affected by the presence of M-A constituent. When a comparison of the effectiveness is made between Al and Si, it showed that a decrease in Si content is more effective in reducing M-A constituents.


2021 ◽  
Vol 544 ◽  
pp. 152680
Author(s):  
Valentin K. Shamardin ◽  
Tatyana M. Bulanova ◽  
Alexander E. Fedoseev ◽  
Alexei A. Karsakov ◽  
Ruslan Z. Valiev ◽  
...  

Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1691
Author(s):  
Hui Zhang ◽  
Yanfeng Liu ◽  
Xian Zhai ◽  
Wenkai Xiao

During the casting cooling process or the forging process, austenitic stainless steel will remain at around 800 °C for some time. During this period, precipitate particle behaviors in austenitic stainless steel (containing ferrite) will cause a reduction in ductility, which can lead to material cracking. In this study, the effects of aging at 800 °C on the microstructure, impact toughness and microhardness of Z2CND18-12N austenitic stainless steel were systematically investigated. The precipitation processes of the χ and σ phases were characterized by color metallography and back scattered electron (BSE) signals. The toughness was investigated by the Charpy impact test. After the aging treatment, the χ and σ phases precipitated successively in the ferrite, and as the aging duration increased, the χ-phase dissolved and the σ-phase precipitated along the austenite grain boundaries. These all lead to a decrease in toughness and an increase in microhardness. Finally, the relationship between fracture morphology and aging time is discussed herein, and a crack mechanism is given.


2011 ◽  
Vol 702-703 ◽  
pp. 766-769 ◽  
Author(s):  
A. Ray ◽  
Debalay Chakrabarti

Charpy impact testing (over the transition temperature rage) on different samples of a Ti-microalloyed steel, having the same average-TiN particle size but different average-ferrite grain sizes, showed that in spite of the presence of large TiN cuboides, ferrite grain refinement can significantly improve the impact toughness, provided the meso-texture (i.e. the intensity of low-angle boundaries) and matrix strength can be restricted to low values.


2010 ◽  
Vol 150-151 ◽  
pp. 779-782
Author(s):  
Qing Xin Zhao ◽  
Zhao Yang Liu ◽  
Jin Rui Zhang ◽  
Ran Ran Zhao

By means of the three-point bending impact equipment, with the measurement of ultrasonic velocity, the impact behavior and damage evolution of reactive powder concrete (RPC) with 0, 1%, 2% and 3% volume fraction of steel fiber were tested. The results showed that steel fiber significantly improved the compressive strength, flexural strength, flexural toughness and impact toughness of RPC matrix. The compressive strength, flexural strength, flexural toughness of RPC with 3% steel fiber increased by 40.1%, 102.1%, and 37.4 times than that of plain concrete, respectively, and simultaneously, the impact toughness of RPC with 3% steel fiber was 93.2 times higher than that with 1% steel fiber. RPC with 2% and 3% steel fiber dosage both had relatively high compressive strength, flexural strength and flexural toughness; however, compared with the sample with 2% steel fiber dosage, the impact toughness of RPC with 3% steel fiber dosage increased by more than 10 times. Therefore, taking economy and applicability into consideration, if we mainly emphasis on the compressive strength, flexural strength and flexural toughness, RPC with 2% steel fiber is optimal. While if impact toughness is critical, RPC with 3% steel fiber would be the best choice.


2014 ◽  
Vol 783-786 ◽  
pp. 619-623 ◽  
Author(s):  
Tomonrori Kitashima ◽  
K.S. Suresh ◽  
Y. Yamabe-Mitarai ◽  
S. Iwasaki

The present study aims to quantify the properties of Ga-bearing near-titanium alloys in order to aid the future design of new compositions with Ga addition. The effect of different amounts of Sn and Ga, with an almost constant value in the Al equivalent without the formation of 2 phase, on microstructure, tensile strength and Charpy impact toughness was investigated at room temperature and 650°C. The microstructures after forging, hot rolling and heat treatment showed a bimodal structure. Increasing Ga decreased the 0.2% proof stress at 650°C. However, these alloys showed similar impact value at room temperature which was about 40 J/cm2. Increasing the amount of Ga increased the volume fraction of the equiaxed phase. The amount of Ga had only a minor effect on grain size, misorientation angles and grain aspect ratios of the alloy. However, Ga addition had a strong influence on the evolution of texture. Formation of <10-10> and <10-11> || normal direction (ND) fibers were observed in the Ga added samples, in addition to <0001> || ND fiber with a weak <10-11> || ND fiber. The Ga-free sample contained a strong <0001> || ND fiber. Other fibers were not observed.


Sign in / Sign up

Export Citation Format

Share Document