scholarly journals Effect of VN and TiB2-TiCx Reinforcement on Wear Behavior of Al 7075-Based Composites

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3389
Author(s):  
Yaping Bai ◽  
Jiale Wei ◽  
Naqing Lei ◽  
Jianping Li ◽  
Yongchun Guo ◽  
...  

Al 7075 alloy, 15 wt.% VN/7075 composites, and 20 wt.% TiB2-TiCx/7075 composites were prepared by ball milling with subsequent hot-pressing sintering. The microstructure, hardness, and wear properties at room temperature to 200 °C of Al 7075-based composites with different reinforcement phases were discussed. The grain uniformity degree values of 15 wt.% VN/7075 composites and 20 wt.% TiB2-TiCx/7075 composites were 0.25 and 0.13, respectively. The reinforcement phase was uniformly distributed in 15 wt.% VN/7075 composites and 20 wt.% TiB2-TiCx/7075 composites, almost no agglomeration occurred. The order of hardness was 20 wt.% TiB2-TiCx/7075 composites (270.2 HV) > 15 wt.% VN/7075 composites (119.5 HV) > Al 7075 (81.8 HV). At the same temperature, the friction coefficient of 15 wt.% VN/7075 composites was the lowest, while the volume wear rate of 20 wt.% TiB2-TiCx/7075 composites was the lowest. With the increase of temperature, the wear mechanism of Al 7075 changed from spalling wear to oxidation wear and adhesion wear. However, the wear mechanisms of 15 wt.% VN/7075 and 20 wt.% TiB2-TiCx/7075 composites changed from abrasive wear at room temperature to wear mechanism (oxidation wear, abrasive wear, and adhesive wear) at medium and low temperature. Comprehensive wear test results indicated that 20 wt.% TiB2-TiCx/7075 composites had excellent tribological properties at medium and low temperature.

2021 ◽  
Vol 59 (12) ◽  
pp. 870-879
Author(s):  
Kyoung-Wook Kim ◽  
Min-Seok Baek ◽  
Kwangjun Euh ◽  
Kee-Ahn Lee

Al 7075 alloy was manufactured using the twin-roll strip casting (TRC) process, and the mechanical and wear properties of the fabricated TRC process were investigated. To compare the properties of the alloy manufactured by TRC, another Al 7075 alloy was fabricated by conventional direct chill (DC) casting as a comparative material. Based on initial microstructure observations, the Al 7075 alloy manufactured by the DC process showed relatively elongated grains compared to the Al 7075 alloy by TRC process. In both alloys, η(MgZn2) phases were present at the grain and grain boundaries. In the Al 7075 alloy manufactured by the DC process, the η(MgZn2) phases were coarse with a size of ~86 nm and were mainly concentrated in the local area. However, the Al 7075 alloy manufactured by TRC had relatively fine η(MgZn2) phases size of ~40 nm, and they were evenly distributed throughout the matrix. When the mechanical properties of the two alloys were compared, the TRC process showed higher hardness and strength properties than the DC process. In room temperature wear test results, the TRC process exhibited lower weight loss and wear rates compared to the DC process at all wear loads. In other words, the TRC process resulted in relatively superior wear resistance properties compared to the conventional DC process. The wear behavior of both alloys changed from abrasive wear to adhesive wear as the wear load increased. However, the TRC process maintained abrasive wear up to higher loads. Based on the above results, a correlation between the microstructure and wear mechanism of the Al 7075 alloy manufactured by TRC is also suggested.


2016 ◽  
Vol 68 (4) ◽  
pp. 476-481 ◽  
Author(s):  
Harun Mindivan

Purpose This study aims to investigate the microstructure and the abrasive wear features of the untreated and pack borided GGG 50 quality ductile iron under various working temperatures. Design/methodology/approach GGG 50 quality as-cast ductile iron samples were pack borided in Ekabor II powder at 900°C for 3 h, followed by furnace cooling. Structural characterization was made by optical microscopy. Mechanical characterization was made by hardness and pin-on-disc wear test. Pin-on-disc test was conducted on a 240-mesh Al2O3 abrasive paper at various temperatures in between 25 and 450°C. Findings Room temperature abrasive wear resistance of the borided ductile iron increased with an increase in its surface hardness. High-temperature abrasive wear resistances of the borided ductile iron linearly decreased with an increase in test temperature. However, the untreated ductile iron exhibited relatively high resistance to abrasion at a temperature of 150°C. Originality/value This study can be a practical reference and offers insight into the effects of boriding process on the increase of room temperature wear resistance. However, above 150°C, the untreated ductile iron exhibited similar abrasive wear performance as compared to the borided ductile iron.


2012 ◽  
Vol 157-158 ◽  
pp. 1628-1631
Author(s):  
Xiao Dong Yang ◽  
Zhuo Juan Yang ◽  
You Quan Chen

By using pin-on-disk wear test method, the wear behavior of W9Gr4V high speed steel with smooth and non-smooth concave samples which treated by laser texturing technology was investigated between room temperature and 500 . It was found that the anti-wear ability of the non-smooth concave samples was increased more than that of the smooth ones and the anti-wear ability of the non-smooth samples was evident than the smooth ones at temperature increasing. In this paper, the anti-wear mechanism of non-smooth concave samples and wear characteristics with smooth and non-smooth samples in high-temperature were analyzed.


2017 ◽  
Vol 24 (Supp02) ◽  
pp. 1850034
Author(s):  
KONG DEJUN ◽  
TANG CHENGJIAN

A TiAlSiN coating was deposited on H13 hot work mould steel using a cathodic arc ion plating (CAIP). The friction-wear performances of the obtained coating under different loads were characterized on an HT-1000 type high temperature tribological tester at 800[Formula: see text]C. The morphologies and chemical compositions of the worn tracks were analyzed using a scanning electronic microscope (SEM) and its configured energy dispersive spectrometer (EDS), respectively, and the corresponding wear mechanisms were discussed. The results show that the average coefficient of friction (COF) of the TiAlSiN coating at the loads of 2, 4 and 6[Formula: see text]N is 0.3072, 0.3040, and 0.4114, respectively, the COFs of the coating are stable at the loads of 2 and 4[Formula: see text]N, while those at the load of 6[Formula: see text]N are obviously increased. Under the load of 2[Formula: see text]N, a small amount of large and scattered white debris disperses on the worn track, the wear mechanism is adhesive wear. While the white wear debris appears on the worn track under the load of 4[Formula: see text]N, the COFs are relatively stable, due to the effects of oxide layer on the worn track, and the wear mechanism is abrasive wear and oxidation wear. Under the load of 6[Formula: see text]N, a number of shallow grooves and cracks appear on the worn tracks, showing that the coating is basically worn out, the wear mechanism is abrasive wear and oxidation wear.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 128
Author(s):  
Napisah Sapiai ◽  
Aidah Jumahat ◽  
Mohammad Jawaid ◽  
Carlo Santulli

Kenaf (Hibiscus Cannabinus) fibers have received significant attention for replacing the usage of synthetic fibers, especially glass fiber, in the fabrication of fiber-reinforced polymer (FRP) composites. The aim of this research was to study the change in wear behavior of kenaf–epoxy fiber composites by filling them with multiwall carbon nanotubes (MWCNT). In particular, the effect of untreated MWCNT (PMWCNT), acid-treated MWCNT (AMWCNT), and silane-treated MWCNT (SMWCNT) was studied, using three different MWCNT loadings, i.e., 0.5, 0.75, and 1 wt.%. The abrasive wear test was conducted to measure the wear properties of the composites. A thermal infrared camera was also used to measure the punctual contact temperature during the abrasive wear test, while the abraded surfaces were analyzed using the stereomicroscope. Starting from the considerable reduction of wear rate with the introduction of kenaf fibers, it was observed that PMWCNT provided some further, yet modest, reduction of wear rate only at the higher loadings. In contrast, the inclusion of AMWCNT proved to increase the specific wear rate of the epoxy–kenaf composites, an effect worsened at higher loadings. This may be due to the weakened interfacial bonding between the AMWCNT and epoxy. On the other hand, the presence of SMWCNT improved the interfacial bonding between CNT and epoxy, as shown by an increase in contact temperature. However, the increase in bonding strength was stipulated to have caused the rougher worn debris, thus inducing a three-body abrasive wear effect.


2010 ◽  
Vol 303-304 ◽  
pp. 85-97 ◽  
Author(s):  
B.B. Jha ◽  
Barada Kanta Mishra ◽  
T.K. Sahoo ◽  
P.S. Mukherjee ◽  
S.N. Ojha

The present paper investigates the effect of microstructural variations upon the wear properties of 2.25Cr-1Mo steel using a dry sliding wear test. Optical, Scanning and Transmission Electron Microscopy (TEM) together with Energy Dispersive X-ray analysis (EDX) have been used to characterize the microstructures and identify the evolution of various precipitates in terms of their shapes, sizes and morphologies. The wear behavior of this steel was investigated using a disc-on-roller multiple wear tester under dry sliding conditions, rubbing against EN-31 steel. Samples were tested at 100N load and 500rpm sliding speed at room temperature. A decrease in wear loss was measured continuously for up to one hour for all the samples. The results indicated that the wear behavior of this steel was highly influenced by microstructural variations taking place during service exposure. The precipitation of globular Cr- and Mo-rich carbides has been found to improve the wear behavior of this steel at room temperature. Scanning Electron Micrographs (SEM) of worn surfaces have been used to correlate the results obtained


Author(s):  
Shao Lifan ◽  
Ge Yuan ◽  
Kong Dejun

In order to improve the friction and wear properties of Cu10Al–MoS2 coating, the addition of CeO2 is one of the present research hot spots. In this work, Cu10Al–MoS2 coatings with different CeO2 mass fractions were successfully fabricated on Q235 steel using a laser cladding. The microstructure and phase compositions of obtained coatings were analyzed using an ultra-depth of field microscope and X-ray diffraction, respectively. The friction-wear test was carried out under oil lubrication using a ball-on-disk wear tester, and the effects of CeO2 mass fraction on the microstructure, hardness, and friction-wear properties were studied, and the wear mechanism was also discussed. The results show that the laser cladded Cu10Al–MoS2 coatings with the different CeO2 mass fractions were mainly composed of Cu9Al4, Cu, AlFe3, Ni, MoS2, and CeO2 phases. The Vickers-hardness (HV) of Cu10Al–8MoS2–3CeO2, Cu10Al–8MoS2–6CeO2, and Cu10Al–8MoS2–9CeO2 coatings was 418, 445, and 457 HV0.3, respectively, which indicates an increase in hardness with the increase of CeO2 mass fraction. The average coefficients of friction (COF) and wear rates decrease with the increase of CeO2 mass fraction, presenting the outstanding friction reduction and wear resistance performances. The wear mechanism of Cu10Al–MoS2 coatings is changed from abrasive wear with slight fatigue wear to abrasive wear with the increase of CeO2 mass fraction.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Mahsa Ebrahimi ◽  
Abbas Zarei-Hanzaki ◽  
A. H. Shafieizad ◽  
Michaela Šlapáková ◽  
Parya Teymoory

The present work was primarily conducted to study the wear behavior of as-received and severely deformed Al-15%Mg2Si in situ composites. The severe plastic deformation was applied using accumulative back extrusion (ABE) technique (one and three passes). The continuous dynamic recrystallization (CDRX) was recognized as the main strain accommodation and grain refinement mechanism within aluminum matrix during ABE cycles. To investigate the wear properties of the processed material, the dry sliding wear tests were carried out on both the as-received and processed samples under normal load of 10 and 20 N at room temperature, 100 °C, and 200 °C. The results indicated a better wear resistance of processed specimens in comparison to the as-received ones at room temperature. In addition, the wear performance was improved as the ABE pass numbers increased. These were related to the presence of oxide tribolayer. At 100 °C, the as-received material exhibited a better wear performance compared to the processed material; this was attributed to the formation of a work-hardened layer on the worn surface. At 200 °C, both the as-received and processed composites experienced a severe wear condition. In general, elevating the temperature changed the dominant wear mechanism from oxidation and delamination at room temperature to severe adhesion and plastic deformation at 200 °C.


Author(s):  
Arabinda Meher ◽  
Manas Mohan Mahapatra ◽  
Priyaranjan Samal ◽  
Pandu R. Vundavilli

In the present study, the statistical analysis on tribological behavior of RZ5/TiB2 magnesium-based metal matrix composites is carried out using Taguchi design and analysis of variance (ANOVA) technique. Taguchi analysis using signal-to-noise ratio indicates that the sliding distance and wt.% TiB2 are the most significant factors in evaluating weight loss and coefficient of friction, respectively. The regression equation is formulated utilizing the ANOVA technique to study the output responses based on the input abrasive wear test experimental results. The regression equation is validated through a comprehensive study taking a series of abrasive wear tests and indicates the percentage deviation of regression modeling is in the range of ± 10%. The individual and combined effect of wear parameters on tribological behavior are investigated through the main effect plots and response surface plots. The micrograph of the worn surface of RZ5/TiB2 composites is studied using field emission scanning electron microscope (FESEM), indicating the formation of an oxide layer on the worn surface.


2021 ◽  
Author(s):  
Safiye İpek Ayvaz ◽  
Mehmet Ayvaz

In this study, the effect of different counterparts on the wear resistance of AA6082 aluminum alloy was investigated. In tests using pin-on-disk method, 6 mm diameter Al2O3, 100Cr6 and WC-6Co balls were used as counterparts. The tests were carried out using 500 m sliding distance and 5N load. The lowest specific wear rate was measured as 7.58x10-4 mm3/Nm in WC-6Co / AA6082 couple, and the highest value was measured as 9.71x10-4 mm3/Nm in 100Cr6/AA6082 couple. In the Al2O3/AA6082 couple, the specific wear rate of the AA6082-T6 sample was determined as 8.23x10-4 mm3/Nm.While it was observed that the dominant wear type in the 100Cr6/AA6082 pair was abrasive wear, oxidation wear and oxide tribofilm were detected in the WC-6Co/AA6082 and Al2O3/AA6082 couple besides the abrasive wear.


Sign in / Sign up

Export Citation Format

Share Document