scholarly journals Abrasive Wear Behavior of CNT-Filled Unidirectional Kenaf–Epoxy Composites

Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 128
Author(s):  
Napisah Sapiai ◽  
Aidah Jumahat ◽  
Mohammad Jawaid ◽  
Carlo Santulli

Kenaf (Hibiscus Cannabinus) fibers have received significant attention for replacing the usage of synthetic fibers, especially glass fiber, in the fabrication of fiber-reinforced polymer (FRP) composites. The aim of this research was to study the change in wear behavior of kenaf–epoxy fiber composites by filling them with multiwall carbon nanotubes (MWCNT). In particular, the effect of untreated MWCNT (PMWCNT), acid-treated MWCNT (AMWCNT), and silane-treated MWCNT (SMWCNT) was studied, using three different MWCNT loadings, i.e., 0.5, 0.75, and 1 wt.%. The abrasive wear test was conducted to measure the wear properties of the composites. A thermal infrared camera was also used to measure the punctual contact temperature during the abrasive wear test, while the abraded surfaces were analyzed using the stereomicroscope. Starting from the considerable reduction of wear rate with the introduction of kenaf fibers, it was observed that PMWCNT provided some further, yet modest, reduction of wear rate only at the higher loadings. In contrast, the inclusion of AMWCNT proved to increase the specific wear rate of the epoxy–kenaf composites, an effect worsened at higher loadings. This may be due to the weakened interfacial bonding between the AMWCNT and epoxy. On the other hand, the presence of SMWCNT improved the interfacial bonding between CNT and epoxy, as shown by an increase in contact temperature. However, the increase in bonding strength was stipulated to have caused the rougher worn debris, thus inducing a three-body abrasive wear effect.

2021 ◽  
pp. 1-24
Author(s):  
Aluru Praveen Sekhar ◽  
Debdulal Das

Abstract This study aims to correlate the abrasive wear performance with mechanical properties, considering AA6063 Al-Mg-Si alloy as the model material. The selected alloy specimens are subjected to artificial ageing at 150 °C for an ageing duration ranging from 1 to 672 h, covering severely under-aged (SUA) to peak-aged (PA) to severely over-aged (SOA) states. Apart from the hardness and tensile properties, two-body abrasive wear properties are also evaluated for differently aged alloys in terms of wear rate, coefficient of friction, and roughness of the abraded surfaces. Furthermore, the generated wear debris, surface, and sub-surface of the abraded specimens are critically examined to reveal the micro-mechanisms of abrasion. The lowest amount of wear rate is observed for a PA alloy with maximum hardness, while the OA alloy exhibits a slightly lower wear rate than the UA alloy at a similar level of hardness. Statistical analyses of wear rate and various mechanical properties of all heat-treated alloys establish a strong negative linear correlation between the wear rate and hardness, yield strength, tensile strength, and strength coefficient; whereas, a positive linear correlation with the strain hardening exponent. Relationships between wear rate and different roughness parameters are also discussed. Under the investigated wear condition, the aged alloys endure significant plastic deformation; micro-plowing, micro-cutting, and delamination are found to be the predominant mechanisms during abrasion.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3389
Author(s):  
Yaping Bai ◽  
Jiale Wei ◽  
Naqing Lei ◽  
Jianping Li ◽  
Yongchun Guo ◽  
...  

Al 7075 alloy, 15 wt.% VN/7075 composites, and 20 wt.% TiB2-TiCx/7075 composites were prepared by ball milling with subsequent hot-pressing sintering. The microstructure, hardness, and wear properties at room temperature to 200 °C of Al 7075-based composites with different reinforcement phases were discussed. The grain uniformity degree values of 15 wt.% VN/7075 composites and 20 wt.% TiB2-TiCx/7075 composites were 0.25 and 0.13, respectively. The reinforcement phase was uniformly distributed in 15 wt.% VN/7075 composites and 20 wt.% TiB2-TiCx/7075 composites, almost no agglomeration occurred. The order of hardness was 20 wt.% TiB2-TiCx/7075 composites (270.2 HV) > 15 wt.% VN/7075 composites (119.5 HV) > Al 7075 (81.8 HV). At the same temperature, the friction coefficient of 15 wt.% VN/7075 composites was the lowest, while the volume wear rate of 20 wt.% TiB2-TiCx/7075 composites was the lowest. With the increase of temperature, the wear mechanism of Al 7075 changed from spalling wear to oxidation wear and adhesion wear. However, the wear mechanisms of 15 wt.% VN/7075 and 20 wt.% TiB2-TiCx/7075 composites changed from abrasive wear at room temperature to wear mechanism (oxidation wear, abrasive wear, and adhesive wear) at medium and low temperature. Comprehensive wear test results indicated that 20 wt.% TiB2-TiCx/7075 composites had excellent tribological properties at medium and low temperature.


2015 ◽  
Vol 809-810 ◽  
pp. 1169-1174
Author(s):  
Adrian Cotet ◽  
Luminita Ciupagea ◽  
Dumitru Dima ◽  
Gabriel Andrei

Friction coefficient and linear wear rate of polyester-carbon nanotubes composites were investigated through ball-on-flat reciprocating test, under dry sliding contact. Three types of nanoscopic fillers were used: multiwall carbon nanotubes (MWCNT), functionalized multiwall carbon nanotubes (MWCNT-COOH) and singlewall carbon nanotubes (SWCNT), with three values of weight content 0.1, 0.15 and 0.2 wt%. Comparative analysis was done for polyester and its composites tested over 14 m sliding distance, under three values of load, 30 N, 40 N and 50 N. Composites containing MWCNT underwent a decrease in friction coefficient and linear wear rate only in case of 50N loading. An improvement of wear behavior under 50N loading was obtained for the composite with 0.10 wt% functionalized carbon nanotubes. Generally, better values of wear rate at 50 N loading were recorded in case of composites with 0.15 wt% and 0.20 wt% MWCNT and SWCNT, respectively. Optical and electronic investigation of the worn surfaces revealed the occurrence of abrasive, adhesive and fatigue wear. Abrasive wear is due to the hard particles detached from the counterpart which produce scratches and furrows on sliding track. Adhesive wear results when soft particle of polymer are caught and blocked among the asperities of counterpart, and it develops over a local area, being influenced by temperature rise. Fatigue and abrasive wear are responsible for the formation of the 3rd body between contacting parts which affects the friction and wear behavior. Morphological analysis of worn surface showed the rise of transfer film that induces instability of wear parameters.


2021 ◽  
Vol 59 (12) ◽  
pp. 870-879
Author(s):  
Kyoung-Wook Kim ◽  
Min-Seok Baek ◽  
Kwangjun Euh ◽  
Kee-Ahn Lee

Al 7075 alloy was manufactured using the twin-roll strip casting (TRC) process, and the mechanical and wear properties of the fabricated TRC process were investigated. To compare the properties of the alloy manufactured by TRC, another Al 7075 alloy was fabricated by conventional direct chill (DC) casting as a comparative material. Based on initial microstructure observations, the Al 7075 alloy manufactured by the DC process showed relatively elongated grains compared to the Al 7075 alloy by TRC process. In both alloys, η(MgZn2) phases were present at the grain and grain boundaries. In the Al 7075 alloy manufactured by the DC process, the η(MgZn2) phases were coarse with a size of ~86 nm and were mainly concentrated in the local area. However, the Al 7075 alloy manufactured by TRC had relatively fine η(MgZn2) phases size of ~40 nm, and they were evenly distributed throughout the matrix. When the mechanical properties of the two alloys were compared, the TRC process showed higher hardness and strength properties than the DC process. In room temperature wear test results, the TRC process exhibited lower weight loss and wear rates compared to the DC process at all wear loads. In other words, the TRC process resulted in relatively superior wear resistance properties compared to the conventional DC process. The wear behavior of both alloys changed from abrasive wear to adhesive wear as the wear load increased. However, the TRC process maintained abrasive wear up to higher loads. Based on the above results, a correlation between the microstructure and wear mechanism of the Al 7075 alloy manufactured by TRC is also suggested.


2020 ◽  
Vol 22 (4) ◽  
pp. 1031-1046
Author(s):  
X. Canute ◽  
M. C. Majumder

AbstractThe need for development of high temperature wear resistant composite materials with superior mechanical properties and tribological properties is increasing significantly. The high temperature wear properties of aluminium boron carbide composites was evaluated in this investigation. The effect of load, sliding velocity, temperature and reinforcement percentage on wear rate was determined by the pin heating method using pin heating arrangement. The size and structure of base alloy particles change considerably with an increase of boron carbide particles. The wettability and interface bonding between the matrix and reinforcement enhanced by the addition of potassium flurotitanate. ANOVA technique was used to study the effect of input parameters on wear rate. The investigation reveals that the load had higher significance than sliding velocity, temperature and weight fraction. The pin surface was studied with a high-resolution scanning electron microscope. Regression analysis revealed an extensive association between control parameters and response. The developed composites can be used in the production of automobile parts requiring high wear, frictional and thermal resistance.


Author(s):  
Arabinda Meher ◽  
Manas Mohan Mahapatra ◽  
Priyaranjan Samal ◽  
Pandu R. Vundavilli

In the present study, the statistical analysis on tribological behavior of RZ5/TiB2 magnesium-based metal matrix composites is carried out using Taguchi design and analysis of variance (ANOVA) technique. Taguchi analysis using signal-to-noise ratio indicates that the sliding distance and wt.% TiB2 are the most significant factors in evaluating weight loss and coefficient of friction, respectively. The regression equation is formulated utilizing the ANOVA technique to study the output responses based on the input abrasive wear test experimental results. The regression equation is validated through a comprehensive study taking a series of abrasive wear tests and indicates the percentage deviation of regression modeling is in the range of ± 10%. The individual and combined effect of wear parameters on tribological behavior are investigated through the main effect plots and response surface plots. The micrograph of the worn surface of RZ5/TiB2 composites is studied using field emission scanning electron microscope (FESEM), indicating the formation of an oxide layer on the worn surface.


2021 ◽  
Author(s):  
Safiye İpek Ayvaz ◽  
Mehmet Ayvaz

In this study, the effect of different counterparts on the wear resistance of AA6082 aluminum alloy was investigated. In tests using pin-on-disk method, 6 mm diameter Al2O3, 100Cr6 and WC-6Co balls were used as counterparts. The tests were carried out using 500 m sliding distance and 5N load. The lowest specific wear rate was measured as 7.58x10-4 mm3/Nm in WC-6Co / AA6082 couple, and the highest value was measured as 9.71x10-4 mm3/Nm in 100Cr6/AA6082 couple. In the Al2O3/AA6082 couple, the specific wear rate of the AA6082-T6 sample was determined as 8.23x10-4 mm3/Nm.While it was observed that the dominant wear type in the 100Cr6/AA6082 pair was abrasive wear, oxidation wear and oxide tribofilm were detected in the WC-6Co/AA6082 and Al2O3/AA6082 couple besides the abrasive wear.


2020 ◽  
Vol 1002 ◽  
pp. 151-160 ◽  
Author(s):  
Anmar D. Mahdi ◽  
Saif S. Irhayyim ◽  
Salah F. Abduljabbar

Al7075 hybrid nanocomposites considered one of the most material utilized in modern engineering applications that required a combination of superior properties such as lightweight, high strength, excellent corrosion resistance, and high thermal conductivity. In the current study, Al7075 – 5 vol % graphite self-lubricating composite was reinforced by 0, 1.5, 2.5, 3.5, and 4.5 vol % WO3 nanoparticles in order to study the microstructural, mechanical, and wear characteristics. The classical powder metallurgy route was employed to fabricate the hybrid nanocomposites specimens. The microstructural analysis of the nanocomposites was characterized by utilizing a Field Emission Scanning Electron Microscope (FESEM) and Energy-Dispersive X-ray (EDX) analyses. Mechanical properties such as micro-hardness and diametral compressive strength were studied. Dry sliding wear test was performed under the various loads of 10, 15, 20, and 25 N at a sliding distance and sliding speed of 1810 m and 1.5 m/s, respectively. Results have revealed that the microhardness and diametral compressive strength considerably improved by increasing the WO3 content until 3.5 vol % and then slightly decreased. Besides, both the values of the wear rate and friction coefficient gradually reduced by increment the reinforcement content up to 3.5 vol % and then suddenly increases for all the applied loads. Nevertheless, the wear rate and friction coefficient were correlated positively with the applied loads. From the results obtained, graphite as solid lubricating material with WO3 nanoparticles was successfully combined into the Al7075 alloy matrix. The optimum mechanical and wear performance of the hybrid nanocomposite were revealed at 3.5 vol % content of WO3 nanoparticles.


2020 ◽  
Vol 10 (14) ◽  
pp. 4909
Author(s):  
Shing-Hoa Wang ◽  
Chau-Chang Chou ◽  
Hsien-Hung Chung ◽  
Rong-Tan Huang ◽  
Horng-Yi Chang ◽  
...  

Lubricated sliding wear of amorphous (Zr55Cu30Ni10Al5)99.98Sc0.02/CuZr2 nanocrystal composite bulk metallic glasses (BMG) under various sliding velocities with a load of 20 N was investigated using the pin-on-disk test. After the wear test involving oil lubrication was performed, there was no wear induced new-phase transformation in the sample surface. Friction coefficients were within the range from 0.22 to approximately 0.29 under a 20-N load at different sliding velocities. Therefore, the calculated friction coefficients clearly indicated that the adhesion wear dominated from the experimental results. This deformation behavior resulted in a higher wear rate and wear coefficient. In addition, worn surfaces were characterized and examined under a scanning electron microscope (SEM) and optical microscope. The mechanism of high wear rate was clarified.


Author(s):  
Deepak Mehra ◽  
M.M. Mahapatra ◽  
S. P. Harsha

The purpose of this article is to enhance the mechanical properties and wear resistance of the RZ5 alloy used in the aerospace application by adding TiC particles. The present study discusses processing of in-situ RZ5-TiC composite fabricated by self-propagating high temperature (S.H.S.) method and its wear behavior. The effects of TiC particle on mechanical and microstructural properties of the composite are studied. The wear test is performed by varying the sliding distance and applied load. The composite is characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results exhibited the properties like strength and hardness of RZ5-10wt%TiC composite has been increased considerably, while grain size is decreased as compared to the RZ5 alloy. The fractography indicated mixed mode (quasi-cleavage and ductile feature) failure of the composites. The wear results showed improvement in wear resistance of the composite. The FESEM showed dominate wear mechanisms are abrasion, ploughing grooves.


Sign in / Sign up

Export Citation Format

Share Document