scholarly journals Experimental Study on Mechanical Properties of High-Ductility Concrete against Combined Sulfate Attack and Dry–Wet Cycles

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4035
Author(s):  
Lingling Li ◽  
Junping Shi ◽  
Jialiang Kou

Concrete will deteriorate and damage under sulfate attack. In order to study the degradation characteristics of HDC under sulfate attack, the mechanical properties of high-ductility concrete (HDC) were investigated using the uniaxial compressive strength test of HDC specimens soaked in different concentrations of sulfate solution and subjected to different times of dry–wet cycles. The variations in the compressive strength, loss rate of compressive strength, and the max compressive strength under the action of sulfate attack and dry–wet cycles were analyzed. The analytical expressions of damage variables were given. SEM was used to observe the microstructure of the sample, and the microdamage mechanism of the HDC was explored. The deterioration of the HDC was found to be the result of the combined action of sulfate attack and dry–wet cycles and was caused by physical attack and chemical attack. PVA prevented the rapid development of deterioration. On the basis of the change of compressive strength, the damage variable was established to quantitatively describe the degree of damage to HDC. The experimental results showed that with the increase in the number of dry–wet cycles, the compressive strength of HDC generally increased first and then decreased. As the concentration of the sulfate solution increased, the loss rate of the compressive strength of HDC generally increased and the max compressive strength gradually decreased. With the increase in the number of dry–wet cycles, HDC first showed self-compacting characteristics and then gradually became destroyed. Compared with ordinary concrete (OC), HDC is superior to OC in sulfate resistance and dry–wet cycles. This study provided a test basis for the engineering application of HDC in sulfate attack and dry–wet cycles environment.

2014 ◽  
Vol 8 (1) ◽  
pp. 444-449
Author(s):  
Lei Jiang ◽  
Ditao Niu

The damage evolution of concrete subjected to drying-wetting cycles in different concentration of sodium sulfate solution was investigated based on micro and macro-observations. Through the experiment, weight loss, compressive strength loss and the damage layer thickness of concrete were measured after different drying-wetting cycles. The mechanical properties degradation in the damage layer of concrete was also analyzed. Furthermore, the scanning electron microscopy and X-ray diffraction were used to investigate the corrosion products of concrete, and the damage mechanism was also investigated by the modern microanalysis techniques. The test results show that the deterioration degree of physical properties of concrete specimens increases with increasing concentration. Weight loss of specimens caused by sulfate attack is not obvious compared with the other evaluation index. When the damage layer thickness of concrete is thicker as well as the ultrasonic speed is lower, indicating that the deterioration degree of concrete increases, and the compressive strength loss in damage layer is serious. It was also found that the compressive loss of concrete is correspond with the observations for the damage layer thickness. Additionally, the main corrosion products of concrete in sulfate solutions subjected to drying-wetting cycles were confirmed to be ettringite and gypsum, and the quantity of corrosion products formed is proportional to the concentration of the solution.


Author(s):  
Pooja Kanaujia ◽  
◽  
Rajiv Banerjee ◽  
Syed Mohammad Ashraf Husain ◽  
Sabih Ahmed ◽  
...  

The effects of different concentrations of sulfate for erosion age on compressive strength, flexural strength, weight analysis, density loss and visual appearances for concrete specimens of different grades were investigated. Experimental studies were carried out on different grades of concrete (M-25, M-30 and M-35). Concrete specimens were immersed in different concentration of sulfate solution i.e. 4.0pH, 5.0pH and 6.0pH. Reduction in compressive strength loss was noticed when the grade of concrete is increased from M-25 to M35. The results of weight analysis and density analysis also confirm the compressive strength loss and flexural strength. Discoloration of concrete was noticed on the concrete blocks when left immersed in sulfate solution at 4.0pH, 5.0pH and 6.0pH for 75days and 90days. It appeared like flakes of concrete and resembled like mold growth.


2011 ◽  
Vol 194-196 ◽  
pp. 1063-1068
Author(s):  
Bao Min Wang ◽  
Ni Tu

Using waste to produce a new type of air entraining agent (AEA), carrying out research of the concrete’s mixture performance, mechanical properties and frost resistance durability after mixing with the AEA, with results showing that amount of air entrained in the concrete mixture and the water reducing rate increases along with the increase of the addition of the new AEA, and its compressive strength loss laws are similar with that of normal AEAs. During the frost-thaw cycle test, when the weight loss rate has reached its limit, concrete with the new AEA added can withstand almost 300 cycles, and at this time the relative dynamic modulus of the concrete, when the amount of air entrained in it is 4.5%, is 83.5%, and the relative dynamic modulus is 85.4% when the amount of air entrained is 5.3%. The addition of the AEA has obviously improved the pore structure of the concrete, and significantly raising its frost resistance durability.


2010 ◽  
Vol 168-170 ◽  
pp. 1501-1505
Author(s):  
Jing Shuang Zhang ◽  
Qin Yong Ma ◽  
Xing Teng Han

According to dry-mixed materials of shotcrete which composed of raw materials in mix proportion the concrete quality as field mixing were included. Through the experimental research on the storage period of using dry-mixed materials in shotcrete, variations of compressive strength were obtained. In according with the studies on the storage period of dry-mixed materials in 7d, 11d, 15d, 20d and 28d, compared with 0d, the loss of compressive strength were obtained under different sand water content (0%, 0.5% and 1.0%). The results shown that strength loss rate of C30 concrete was 6.7% when the sand water content was 0.5% in the 28d and while strength loss rate was 12.0% when the sand water content was 1.0%. The studies on storage period provide supports to the using of dry-mixed shotcrete in engineering application.


2011 ◽  
Vol 418-420 ◽  
pp. 406-410
Author(s):  
Jun Liu ◽  
Yao Li ◽  
Dan Dan Hong ◽  
Yu Liu

Abstract. Recycled aggregate—rural building material wastes pretreated by cement mortar—are applied into concrete with different replacement rates: 0, 25%, 50%, 75%, and 100%. Results from measurements of compressive strength, cleavage tensile strength, mass loss after fast freeze-thaw cycles, and compressive strength loss indicate that a different recycled aggregate replacement rate certainly influences concrete mechanical properties and frost resistance. Recycled aggregate replacement rates less than 75% performs better than common concrete. Data from the 100% replacement rate is worse than that of rates less than 75% but still satisfy the general demands of GB standard on C30 concrete.


2011 ◽  
Vol 295-297 ◽  
pp. 165-169
Author(s):  
Guan Guo Liu ◽  
Jing Ming ◽  
Xiong Wen Zhang ◽  
Ai Bin Ma

Sulfate attack is one of several chemical and physical mechanisms of concrete deterioration. In actual situation, concrete structures always suffer from the coupled effects of multifactor such as wet-dry cycle and sulfate attack when exposed to tidal area or groundwater level change environment. Partial replacement of cement with mineral admixture is one of the efficient methods for improving concrete resistance against sulfate attack. In this regard, the resistance of concrete with fly ash and slag to sulfate attack was investigated by wet-dry cycle method. The degree of sulfate attack on specimens after different cycles was observed using scanning electron microscopy. The results of compressive strength and percentage of compressive strength evolution factor at various cycling times show an increase in the sulfate resistance of concrete with 60% of fly ash and slag than that only with 40% fly ash. The microstructural study indicates that the primary cause of deterioration of concrete under wet-dry cycle condition is swelling of the sulfate crystal rather chemical attack.


2020 ◽  
Vol 53 (6) ◽  
Author(s):  
Fan Wu ◽  
Qingliang Yu ◽  
Changwu Liu ◽  
H. J. H. Brouwers ◽  
Linfeng Wang ◽  
...  

AbstractThe heat-treated apricot shell can be utilized as coarse aggregates for producing sustainable bio-based lightweight concrete with good compressive strength but poor tensile strength. In order to improve the tensile properties of apricot shell concrete (ASC), the effects of polypropylene (PP) fibre, glass (G) fibre and basalt (B) fibre at various volume fractions (Vf) (0.25%, 0.5% and 0.75%) on the performance of ASC were investigated. The results indicated that the fibre type had no significant effect on the physical properties of ASC such as slump, density, water absorption and permeable porosity. However, the slump of ASC decreases with an increase in fibre content. The B fibre has a better improvement in mechanical properties than the PP fibre and G fibre thanks to the better elastic modulus and tensile strength. When the Vf was 0.5%, the compressive strength, splitting tensile strength, flexural strength and modulus of elasticity of ASC reinforced with B fibre were increased by 16.7%, 29.1%, 29.2%, and 18.1%, respectively, compared to ASC without any fibres. The magnesium sulfate attack results showed that the incorporation of the B fibre decreased the mass loss and compressive strength of ASC exposed to a MgSO4 solution for 6 months because the fibre arrested the microcracks caused by the expansive stress. It is concluded that the mechanical properties of bio-based ASC and its resistance to magnesium sulfate attack can be significantly improved by incorporating 0.5% B fibre.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Tao Long ◽  
Qingyuan Wang ◽  
Zhongwei Guan ◽  
Yu Chen ◽  
Xiaoshuang Shi

Fly ash geopolymer concrete (FAGC) and ordinary Portland cement concrete (OPCC) specimens were immersed in 5% MgSO4solution undergoing 32 wetting-drying and heating-cooling cycles. Their compressive behavior was investigated after every 8 cycles. Several microstructure analysis techniques were applied on the samples to identify the materials formed due to magnesium sulfate attack, including XRD, FTIR, SEM, and EDS. Experimental results elucidated that the compressive strength loss ratio in the heating group of FAGC was 12.7%, while that of OPCC was 17.8%, which means that FAGC had better magnesium sulfate resistance than OPCC. The compressive strength loss of OPCC was due to the formation of gypsum under the magnesium sulfate attack exposed to wetting-drying and heating-cooling cycles. The deterioration mechanisms of FAGC against MgSO4solution were discovered to be that sodium aluminum silicate hydrate (N-A-S-H) gels reacted with MgSO4, leading to the creation of low strength magnesium aluminum silicate hydrate (M-A-S-H) gels.


2018 ◽  
Vol 1145 ◽  
pp. 106-111
Author(s):  
De Jia Liu ◽  
Mei Jun Chen ◽  
Li Xue ◽  
Fan He ◽  
Jian Hu

With the rapid development of construction, the high quality of the construction material is required. Mixing carbon fiber in concrete attracts more and more attention as it can reinforce concrete. However, the science research and engineering application of carbon fiber reinforced concrete is relatively few. In this paper, the effects of different mixing amount of carbon fiber and the sand ratio in concrete and the curing time of concrete and relationships between these factors were investigated. Proper carbon fiber and sand ratio can promote the compressive strength of concrete and it has a good resistance to cracking. The compressive strength of concrete with different mixing amounts of carbon fiber peaks when the sand ratio was 31% and the compressive strength was better when the carbon fiber mixing amount was 0.2% and 1% than any other ratios after 28 days. When the sand ratio was 31%, the compressive strength of carbon fiber mixing amount increased with the increase of curing time and it reached the top when the carbon fiber ratio was 0.8%. The mixing amount of carbon fiber also had a great influence on the early compressive strength to some extent. We anticipate that the research can offer certain reference for engineering practice.


2014 ◽  
Vol 638-640 ◽  
pp. 1431-1435
Author(s):  
Wen Xun Qian ◽  
Yan Chi Zhang ◽  
Xun Jie Chen ◽  
You Lin Ouyang

The performance of resistance to sulfate attack and permeability of chloride ion on concrete with different mineral admixtures (fly ash, slag single or both adding) under sulfate and chloride environment were discussed. The results indicated the performance of resistance to salt attack on concrete with appropriate mineral admixtures was improved. Under chloride environment, the resistance to sulfate attack coefficient of testing mortars descended, and compressive strength loss rate of concrete was raised after dry-wet cycles. Therefore, the performance of resistance to salt attack on concrete was decreased in this environment. Besides, on the initial stage of corrosion, the ability to resist chloride ion penetration of concrete was improved under sulfate environment, while the penetrating of chloride ion was accelerated on the later stage.


Sign in / Sign up

Export Citation Format

Share Document