scholarly journals Optimization of Bio-Foamed Concrete Brick Strength via Bacteria Based Self-Healing and Bio-Sequestration of CO2

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4575
Author(s):  
Abdullah Faisal Alshalif ◽  
J. M. Irwan ◽  
Husnul Azan Tajarudin ◽  
N. Othman ◽  
A. A. Al-Gheethi ◽  
...  

This research aimed to optimize the compressive strength of bio-foamed concrete brick (B-FCB) via a combination of the natural sequestration of CO2 and the bio-reaction of B. tequilensis enzymes. The experiments were guided by two optimization methods, namely, 2k factorial and response surface methodology (RSM). The 2k factorial analysis was carried out to screen the important factors; then, RSM analysis was performed to optimize the compressive strength of B-FCB. Four factors, namely, density (D), B. tequilensis concentration (B), temperature (T), and CO2 concentration, were selectively varied during the study. The optimum compressive strength of B-FCB was 8.22 MPa, as deduced from the following conditions: 10% CO2, 3 × 107 cell/mL of B, 27 °C of T and 1800 kg/m3 of D after 28 days. The use of B. tequilensis in B-FCB improved the compressive strength by 35.5% compared to the foamed concrete brick (FCB) after 28 days. A microstructure analysis by scanning electronic microscopy (SEM), energy dispersive X-ray (EDX) and X-ray diffraction analysis (XRD) reflected the changes in chemical element levels and calcium carbonate (CaCO3) precipitation in the B-FCB pores. This was due to the B. tequilensis surface reactions of carbonic anhydrase (CA) and urease enzyme with calcium in cement and sequestered CO2 during the curing time.

Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3513 ◽  
Author(s):  
Yubin Jun ◽  
Seong Ho Han ◽  
Tae Yong Shin ◽  
Jae Hong Kim

The effect of CO2 curing on alkali-activated slag paste activated by a mixture of sodium hydroxide and sodium silicate solutions is reported in this paper. The paste samples after demolding were cured in three different curing environments as follows: (1) environmental chamber maintained at 85% relative humidity (RH) and 25 °C; (2) 3-bar CO2 pressure vessel; and (3) CO2 chamber maintained at 20% CO2 concentration, 70% RH and 25 °C. The hardened samples were then subjected to compressive strength measurement, X-ray diffraction analysis, and thermogravimetry. All curing conditions used in this study were beneficial for the strength development of the alkali-activated slag paste samples. Among the curing environments, the 20% CO2 chamber was the most effective on compressive strength development; this is attributed to the simultaneous supply of moisture and CO2 within the chamber. The results of X-ray diffraction and thermogravimetry show that the alkali-activated slag cured in the 20% CO2 chamber received a higher amount of calcium silicate hydrate (C-S-H), while calcite formed at an early age was consumed with time. C-S-H was formed by associating the calcite generated by CO2 curing with the silica gel dissolved from alkali-activated slag.


2011 ◽  
Vol 306-307 ◽  
pp. 961-965
Author(s):  
Chao Nan Yin ◽  
Ling Chao Lu ◽  
Shou De Wang

The influence of P2O5on the properties of alite-calcium strontium sulphoaluminate cement was researched by means of X-ray diffraction, scanning electron microscope-energy dispersive spectroscopy (SEM-EDS) and petrographic analysis. The results show that the optimal content of P2O5is 0.3% and the compressive strength of the cement at 1, 3, 28d are 27.0, 59.1, 110.9MPa when the calcining temperature is 1350°C. P2O5mainly exists in the belite and a suitable amount of P2O5can promote the formation of C1.5Sr2.5A3and alite. When the content of P2O5is higher than 0.3%, the formation of C1.5Sr2.5A3and alite can be hindered. P2O5can enhance the hydration heat evolution rate in the acceleration period and the hydrate heat of cement containing P2O5increases slightly.


Author(s):  
Muhammad Armaghan Siffat ◽  
Muhammad Ishfaq ◽  
Afaq Ahmad ◽  
Khalil Ur Rehman ◽  
Fawad Ahmad

This study is supervised to assess the characteristics of the locally available wheat straw ash (WSA) to consume as a substitute to the cement and support in enhancing the mechanical properties of concrete. Initially, after incineration at optimum temperature of 800°C for 0.5, the ash of wheat straw was made up to the desirable level of fineness by passing through it to the several grinding cycles. Subsequently, the X-ray fluorescence (XRF) along with X-ray diffraction (XRD) testing conducted on ash of wheat straw for the evaluation its pozzolanic potential. Finally, the specimens of concrete were made by consuming 10% and 20% percentages of wheat straw ash as a replacement in concrete to conclude its impact on the compressive strength of high strength concrete. The cylinders of steel of dimensions 10cm diameter x 20cm depth were acquired to evaluate the compressive strength of high strength concrete. The relative outcomes of cylinders made of wheat straw ash substitution presented the slight increase in strength values of the concrete. Ultimately, the C-100 blends and WSA aided cement blends were inspected for the rheology of WSA through FTIR spectroscopy along with Thermogravimetric technique. The conclusions authenticate the WSA potential to replace cement in the manufacturing of the high strength concrete.


2020 ◽  
Vol 70 (6) ◽  
pp. 596-602
Author(s):  
P.K. Mehta ◽  
A. Kumaraswamy ◽  
V. K. Saraswat ◽  
Praveen Kumar B.

Utilisation of propellant waste in fabrication of bricks is not only used as efficient waste disposal method but also to get better functional properties. In the present study, high energy propellant (HEP) waste additive mixed with soil and fly ash in different proportions during manufacturing of bricks has been investigated experimentally. X-ray diffraction (XRD) studies were carried out to confirm the brick formation and the effect of HEP waste. Ceramic bricks were fabricated with HEP waste additive in proper proportions i.e. 0.5 wt %, 1.0 wt %, 1.5 wt %, 2.0 wt %, 2.5 wt %, 3 wt %, 3.5 wt %, and 4 wt % and then evaluated for water absorption capability and compressive strength. Compressive strength of 6.7 N/mm2, and Water absorption of 22 % have been observed from modified fired bricks impregnated with HEM waste additive. Scanning electron microscopy (SEM) studies were carried out to analyze the effect of HEP waste additive on pore formation and distribution in the bricks. Further, the heat resulting from decomposition of propellants can cause a decrease in the energy required of baking process. The process of manufacturing of bricks with HEP waste additive is first of its kind till date.


2017 ◽  
Vol 12 (1) ◽  
pp. 63-77 ◽  
Author(s):  
Siriporn Sirikingkaew ◽  
Nuta Supakata

This study presents the development of geopolymer bricks synthetized from industrial waste, including fly ash mixed with concrete residue containing aluminosilicate compound. The above two ingredients are mixed according to five ratios: 100:0, 95:5, 90:10, 85:15, and 80:20. The mixture's physico-mechanical properties, in terms of water absorption and the compressive strength of the geopolymer bricks, are investigated according to the TIS 168-2546 standard. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses are used to investigate the microstructure and the elemental and phase composition of the brick specimens. The results indicate that the combination of fly ash and concrete residue represents a suitable approach to brick production, as required by the TIS 168–2546 standard.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3295
Author(s):  
Mohammad R. Irshidat ◽  
Nasser Al-Nuaimi

This paper experimentally investigates the effect of utilization of carbon dust generated as an industrial waste from aluminum factories in cementitious composites production. Carbon dust is collected, characterized, and then used to partially replace cement particles in cement mortar production. The effect of adding different dosages of carbon dust in the range of 5% to 40% by weight of cement on compressive strength, microstructure, and chemical composition of cement mortar is investigated. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray fluorescence (XRF) analysis are used to justify the results. Experimental results show that incorporation of carbon dust in cement mortar production not only reduces its environmental side effects but also enhances the strength of cementitious composites. Up to 10% carbon dust by weight of cement can be added to the mixture without adversely affecting the strength of the mortar. Any further addition of carbon dust would decrease the strength. Best enhancement in compressive strength (27%) is achieved in the case of using 5% replacement ratio. SEM images show that incorporation of small amount of carbon dust (less than 10%) lead to produce denser and more compact-structure cement mortar.


Minerals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 672
Author(s):  
Dimitris Kioupis ◽  
Aggeliki Skaropoulou ◽  
Sotirios Tsivilis ◽  
Glikeria Kakali

One of the areas of priority in a circular economy, regarding waste management, regards the valorization of construction and demolition wastes (CDW). This study suggests the synthesis of geopolymeric binders based almost entirely on construction and demolition wastes. Ceramic waste was used as the aluminosilicate precursor of the geopolymer synthesis, while glass waste was applied in the preparation of the activation solution. A fractional experimental design defined the optimum synthesis parameters, based on compressive strength values. The final products were characterized by means of X-Ray Diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The glass waste was appropriately processed in order to prepare the activation solution for the geopolymerization of brick waste. In this work, CDW-based geopolymers were produced with a compressive strength in the range 10–44 MPa. The developed products contained 80–90 wt.% CDWs, depending on the method of activator preparation.


DYNA ◽  
2019 ◽  
Vol 86 (211) ◽  
pp. 278-287
Author(s):  
Javier Alberto Olarte Torres ◽  
María Cristina Cifuentes Arcila ◽  
Harvey Andrés Suárez Moreno

This paper presents the results obtained from the synthesis and morphological characterization of different magnetite samples:  La0.67-x Prx Ca0.33 MnO3.LaMn1-x Cox O3 and LaMn1-x Nix O3 at 0.13 ≤ 𝑥𝑥 ≤ 0.67 produced by a solid-state reaction mechanism and 𝐿𝐿𝐿𝐿𝑀𝑀𝑀𝑀1−𝑥𝑥(𝐶𝐶𝐶𝐶/𝑁𝑁𝑁𝑁)𝑥𝑥𝑂𝑂3 at 0.0 ≤ 𝑥𝑥 ≤ 0.5 produced by the sol-gel method. These samples were characterized using X-ray diffraction spectroscopy and by measuring electric resistivity and magnetic susceptibility which were carried out as a function of temperature. Notably, the effects of strain and compressive strength on the lattices of magnetite samples were highly dependent on the concentration of 𝑃𝑃𝑟𝑟, 𝐶𝐶𝐶𝐶, and 𝑁𝑁𝑁𝑁. Moreover, the transition temperatures of metal-insulator and ferromagnetic-paramagnetic phases also largely depend on these strength effects, e.g., at higher concentrations of 𝑃𝑃𝑟𝑟, effects of increased strain strength were observed, relocating the shifts of ferromagnetic-paramagnetic transitions to lower temperatures. On the other hand, effects of increased compressive strength were observed at higher concentrations of 𝑁𝑁𝑁𝑁 and 𝐶𝐶𝐶𝐶, relocating the shifts of ferromagnetic-paramagnetic and metal-insulator transitions to higher temperatures.


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 629 ◽  
Author(s):  
Daria Lazurenko ◽  
Andreas Stark ◽  
Maksim Esikov ◽  
Jonathan Paul ◽  
Ivan Bataev ◽  
...  

In this study, new multilayer TiAl-based composites were developed and characterized. The materials were produced by spark plasma sintering (SPS) of elemental Ti and Al foils and ceramic particles (TiB2 and TiC) at 1250 °C. The matrix of the composites consisted of α2-TiAl and γ-TiAl lamellas and reinforcing ceramic layers. Formation of the α2 + γ structure, which occurred via a number of solid–liquid and solid–solid reactions and intermediate phases, was characterized by in situ synchrotron X-ray diffraction analysis. The combination of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analysis revealed that an interaction of TiC with Ti and Al led to the formation of a Ti2AlC Mn+1AXn (MAX) phase. No chemical reactions between TiB2 and the matrix elements were observed. The microhardness, compressive strength, and creep behavior of the composites were measured to estimate their mechanical properties. The orientation of the layers with respect to the direction of the load affected the compressive strength and creep behavior of TiC-reinforced composites. The compressive strength of samples loaded in the perpendicular direction to layers was higher; however, the creep resistance was better for composites loaded in the longitudinal direction. The microhardness of the composites correlated with the microhardness of reinforcing components.


Sign in / Sign up

Export Citation Format

Share Document