scholarly journals Energy Dissipated in Fatigue and Creep Conditions

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4724
Author(s):  
Stanisław Mroziński ◽  
Zbigniew Lis ◽  
Halina Egner

The paper presents the results of tests performed on samples made of P91 steel under combined variable and constant load conditions, at temperature T = 600 °C. The analysis of the test results was carried out with the use of the energetic description of the fatigue process. It was shown that the order of occurrence of the fatigue load and creep in the load program influences the fatigue life and the value of the energy cumulated in the sample until fracture.

2011 ◽  
Vol 306-307 ◽  
pp. 888-893 ◽  
Author(s):  
Shi Lin Yan ◽  
Wen Tao Li ◽  
Shao Peng Wu ◽  
Ling Pang

The research on the conductive asphalt concrete(CAC) is to melt snow and ice on the pavement and improve the property of skid resistance. However, research at present mainly focuses on the electrical property not on the fatigue behavior which is also important to the application of CAC in the future. The specific rheological model is developed and the relation between creep and fatigue is investigated in this paper. By the single axial static creep test, the existed rheological model (Burgers model) and method of regression, the creep deformation of asphalt concrete is measured with time and parameters of the model are obtained. The results indicate that strain increases quickly with increasing time at initial loading phase, and then the change of strain tend to a stable value in a constant load. At unloading phase, strain decreases immediately and then keep another stable value which was greater than zero. The addition of conductive fillers improves the elastic properties and has no significant influence to the viscosity of asphalt concrete. In addition, the fatigue life can be predicted by the parameters of the Burgers model. The addition of conductive fillers improves energy dissipated, which leads to shorter fatigue life of conductive asphalt concrete compared to the control at levels of longer fatigue life.


2010 ◽  
Vol 168-170 ◽  
pp. 488-491
Author(s):  
Jin Rong Wu

The fatigue behavior of the asphalt mixtures beams is experimented by sine wave load, and the fatigue life is predicted by ultrasonic ware theories. Test results show that ultrasonic ware can reflect better fatigue process, and it is an effective method to analyze and forecast fatigue property.


2020 ◽  
Vol 37 (1−2) ◽  
Author(s):  
Rafal Kozdrach

The article presents the results of research on the influence of polytetrafluoroethylene additive on the tribological and rheological properties of selected lubricant compositions. Based on the obtained test results, it was found that the introduction of a modifying additive to the lubricant structure allows a significant reduction of the coefficient of friction, thus increasing the efficiency of tribological protection of the tribosystem. All lubricating compositions modified with at least 1% polytetrafluoroethylene guarantee effective anti-wear protection under load conditions of the tribosystem. Modification of the tested lubricating compositions with the applied additive affects the increase of indicators characterizing the fatigue life of the examined lubricating greases based on sunflower oil. The introduction of the polytetrafluoroethylene into the structure of the tested lubricants changed the values of the MSD correlation function and the G’ and G’’ modules, which significantly influenced the internal structure of the tested lubricant compositions.


2021 ◽  
pp. 136943322199249
Author(s):  
Xing Li ◽  
Jiwen Zhang ◽  
Jun Cheng

This paper presents fatigue behaviors and the stiffness degradation law of concrete continuous beams with external prestressed carbon fiber-reinforced polymer (CFRP) tendons. Three specimens were tested under fatigue loading, and the influence of different load levels on the stiffness degradation and fatigue life were studied, and it was found that the stiffness degradation of three test specimens exhibited a three-stage change rule, namely rapid decrease, stable degradation, and sharp decline, but there are obvious differences in the rate and amplitude of stiffness degradation. The load level has a significant influence on the fatigue life of the test specimens. An analytical model with load level considered was proposed to calculate the residual stiffness and predict the stiffness degradation, which is in good agreement with the test results. The model of stiffness degradation presents a possible solution for practical engineering applications of concrete continuous beams with externally prestressed CFRP tendons subjected to different fatigue loadings.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3073
Author(s):  
Abbas Mukhtar Adnan ◽  
Chaofeng Lü ◽  
Xue Luo ◽  
Jinchang Wang

This study has investigated the impact of graphene oxide (GO) in enhancing the performance properties of an asphalt binder. The control asphalt binder (60/70 PEN) was blended with GO in contents of 0%, 0.5%, 1%, 1.5%, 2%, and 2.5%. The permanent deformation behavior of the modified asphalt binders was evaluated based on the zero shear viscosity (ZSV) parameter through a steady shear test approach. Superpave fatigue test and the linear amplitude sweep (LAS) method were used to evaluate the fatigue behavior of the binders. A bending beam rheometer (BBR) test was conducted to evaluate the low-temperature cracking behavior. Furthermore, the storage stability of the binders was investigated using a separation test. The results of the ZSV test showed that GO considerably enhanced the steady shear viscosity and ZSV value, showing a significant contribution of the GO to the deformation resistance; moreover, GO modification changed the asphalt binder’s behavior from Newtonian to shear-thinning flow. A notable improvement in fatigue life was observed with the addition of GO to the binder based on the LAS test results and Superpave fatigue parameter. The BBR test results revealed that compared to the control asphalt, the GO-modified binders showed lower creep stiffness (S) and higher creep rate (m-value), indicating increased cracking resistance at low temperatures. Finally, the GO-modified asphalt binders exhibited good storage stability under high temperatures.


2016 ◽  
Vol 62 (1) ◽  
pp. 83-98 ◽  
Author(s):  
A. Szydło ◽  
K. Malicki

Abstract The bonding state of the asphalt layers in a road pavement structure significantly affects its fatigue life. These bondings, therefore, require detailed tests and optimization. In this paper, the analyses of the correlation between the results of laboratory static tests and the results of fatigue tests of asphalt mixture interlayer bondings were performed. The existence of the relationships between selected parameters was confirmed. In the future, the results of these analyses may allow for assessment of interlayer bondings’ fatigue life based on the results of quick and relatively easy static tests.


2016 ◽  
Vol 53 (2) ◽  
pp. 91-97 ◽  
Author(s):  
V.I. Aksenov ◽  
A.V. Iospa ◽  
D.N. Krivov ◽  
K.V. Ozeritskii ◽  
V.V. Doroshin

2005 ◽  
Vol 297-300 ◽  
pp. 539-544
Author(s):  
Jae Joon Shim ◽  
Geun Jo Han ◽  
Kwang Young Kim ◽  
Doo Pyo Yun ◽  
Chul Ho Ok ◽  
...  

Recently, application of semiconductor sensors has widely spreaded into various industries becasuse those have several merits like easy miniaturization and batch production etc. But external conditions such as thermal and repetitive load have a bad effect on sensors’s lifetime. Therefore, lots of studies related with the fatigue of microelectromechnical systems (MEMS) have been conducted. Especially, this paper was focused on fatigue life of aluminum interconnect in the supporting structure of sensor under cyclic thermal load and on the approximation equation defining the critical temperature to ensure required operating life using FEM simulation.


PCI Journal ◽  
2022 ◽  
Vol 67 (1) ◽  
Author(s):  
Jörn Remitz ◽  
Martin Empelmann

Pretensioned concrete beams are widely used as bridge girders for simply supported bridges. Understanding the fatigue behavior of such beams is very important for design and construction to prevent fatigue failure. The fatigue behavior of pretensioned concrete beams is mainly influenced by the fatigue of the prestressing strands. The evaluation of previous test results from the literature indicated a reduced fatigue life in the long-life region compared with current design methods and specifications. Therefore, nine additional high-cycle fatigue tests were conducted on pretensioned concrete beams with strand stress ranges of about 100 MPa (14.5 ksi). The test results confirmed that current design methods and specifications overestimate the fatigue life of embedded strands in pretensioned concrete beams.


2018 ◽  
Vol 28 (8) ◽  
pp. 1170-1190 ◽  
Author(s):  
Wei Wang ◽  
Huaiju Liu ◽  
Caichao Zhu ◽  
Zhangdong Sun

Case hardening processes such as carburizing are extensively applied in heavy-duty gears used in wind turbines, ships, high-speed rails, etc. Contact fatigue failure occurs commonly in engineering practice, thus reduces reliabilities of those machines. Rolling contact fatigue life of a carburized gear is influenced by factors such as the gradients of mechanical properties and profile of initial residual stress. In this regard, the study of contact fatigue life of carburized gears should be conducted with the consideration of those aspects. In this study, a finite element elastic–plastic contact model of a carburized gear is developed which takes the gradients of hardness and initial residual stress into account. Initial residual stress distribution and the hardness profile along the depth are obtained through experimental measurements. The effect of the hardness gradient is reflected by the gradients of yield strength and fatigue parameters. The modified Fatemi–Socie strain-life criterion is used to estimate the rolling contact fatigue life of the heavy-duty carburized gear. Numerical results reveal that according to the Fatemi–Socie fatigue life criterion, rolling contact fatigue failure of the carburized gear will first initiate at subsurface rather than surface. Compared with the un-carburized gear, the rolling contact fatigue lives of the carburized gear under all load conditions are significantly improved. Under heavy load conditions, the carburized layer significantly reduces the fatigue damage mainly due to the benefit to inhibit the accumulation of plasticity. Influence of the residual stress is also investigated. Under the nominal load condition, compared with the residual stress-free case, the existence of the tensile residual stress causes remarkable deterioration of the rolling contact fatigue life while the compressive residual stress with the same magnitude leads to a moderate growth of the rolling contact fatigue life. As the load becomes heavier when plasticity becomes notable, the influence of the initial residual stress on the life is somewhat weakened.


Sign in / Sign up

Export Citation Format

Share Document