scholarly journals The Study of Physicochemical Properties and Blood Compatibility of Sodium Alginate-Based Materials via Tannic Acid Addition

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4905
Author(s):  
Beata Kaczmarek-Szczepańska ◽  
Adrianna Sosik ◽  
Anna Małkowska ◽  
Lidia Zasada ◽  
Marta Michalska-Sionkowska

In this study, sodium alginate-based thin films were modified by the addition of tannic acid. Materials were obtained by solvent evaporation. They were characterized by the observation of its morphology and its surface by scanning electron microscope and atomic force microscope. The thermal properties were studied by differential scanning calorimetry. The concentration of tannic acid released from the material was determined by the Folin–Ciocalteu method. The material safety for biomedical application was determined by the hemolysis rate study in contact with sheep blood as well as platelet adhesion to the material surface. Based on the obtained results, we assume that proposed films based on sodium alginate/tannic acid are safe and may potentially find application in medicine.

Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4572
Author(s):  
Beata Kaczmarek ◽  
Oliwia Miłek ◽  
Marta Michalska-Sionkowska ◽  
Lidia Zasada ◽  
Marta Twardowska ◽  
...  

Sodium alginate and tannic acid are natural compounds that can be mixed with each other. In this study, we propose novel eco-friendly hydrogels for biomedical applications. Thus, we conducted the following assessments including (i) observation of the structure of hydrogels by scanning electron microscope; (ii) bioerosion and the concentration of released tannic acid from subjected material; (iii) dehydrogenase activity assay to determine antibacterial activity of prepared hydrogels; and (iv) blood and cell compatibility. The results showed that hydrogels based on sodium alginate/tannic acid exert a porous structure. The immersion in simulated body fluid (SBF) results in the biomineralization process occurring on their surface while the bioerosion studies revealed that the addition of tannic acid improves hydrogels’ stability proportional to its concentration. Besides, tannic acid release concentration depends on the type of hydrogels and the highest amount was noticed for those based on sodium alginate with the content of 30% tannic acid. Antibacterial activity of hydrogels was proven for both Gram-negative and Gram-positive bacteria, the hemolysis rate was below 5% and the viability of the cells was elevated with an increasing amount of tannic acid in hydrogels. Collectively, we assume that obtained materials make the imperative to consider them for biomedical applications.


2020 ◽  
Vol 9 (4) ◽  
pp. 249-257
Author(s):  
B. Kaczmarek ◽  
O. Mazur ◽  
O. Miłek ◽  
M. Michalska-Sionkowska ◽  
A. Das ◽  
...  

AbstractMaterials based on carbohydrate polymers may be used for biomedical application. However, materials based on natural polymers have weak physicochemical properties. Thereby, there is a challenge to improve their properties without initiation of toxicity. The alternative method compared to toxic chemical agents’ addition is the use of metal complexation method. In this study, chitosan/tannic acid mixtures modified by Fe(III) complexation are proposed and tested for potential applications as wound dressings. Thereby, surface properties, blood compatibility as well as platelet adhesion was tested. In addition, the periodontal ligament stromal cells compatibility studies were carried out. The results showed that the iron(III) addition to chitosan/tannic acid mixture improves properties due to a decrease in the surface free energy and exhibited a reduction in the hemolysis rate (below 5%). Moreover, cells cultured on the surface of films with Fe(III) showed higher metabolic activity. The current findings allow for the medical application of the proposed materials as wound dressings.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 605
Author(s):  
Christian Mariel Sáenz-Santos ◽  
Omotayo Opemipo Oyedara ◽  
Yunia Verónica García-Tejeda ◽  
Claudia A. Romero-Bastida ◽  
Esperanza Milagros García-Oropesa ◽  
...  

The objective of the present work was to evaluate novel active films made with biopolymeric matrices as carriers of a living Bdellovibrio bacteriovorus HD100 strain, a predatory bacterium with antimicrobial potentials against pathogens. Biopolymer films were prepared by a casting method using the following mixtures: collagen/sodium alginate/sorbitol (CA-S), collagen/sodium alginate/glycerol (CA-G), and tapioca starch/sodium alginate/glycerol (StA-G). The effects of the film formulations on the viability of the B. bacteriovorus was investigated by using Fourier Transform Infrared (FTIR) spectroscopy, Differential Scanning Calorimetry (DSC), and Scanning Electron Microscopy (SEM). SEM showed that Bdellovibrio bacteriovorus morphology was not altered in the polymeric films. FTIR spectroscopy provided information about the structural composition of the films. CA-S showed less reduction in the viability of B. bacteriovorus after its entrapment; thus, CA-S proved to be a better agent for the immobilization and preservation of B. bacteriovorus to enhance its predatory activities during application against Escherichia coli.


2011 ◽  
Vol 65 (4) ◽  
Author(s):  
Guo-Quan Zhu ◽  
Fa-Gang Wang ◽  
Qiao-Chun Gao ◽  
Guo-Chang Li ◽  
Ping Wang

AbstractA series of poly(γ-benzyl l-glutamate) (PBLG)/polyurethane (PU) containing carboxyl group blend membranes was prepared by casting the polymer blend solution in dimethylformamide (DMF). The surface morphology of the PBLG/PU blend membranes was investigated by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Thermal, mechanical, and chemical properties of PBLG/PU blend membranes were studied by differential scanning calorimetry (DSC), tensile tests and other physical methods. It was revealed that the introduction of PU could exert outstanding effects on the morphology and the properties of PBLG membrane.


2018 ◽  
Vol 32 (10) ◽  
pp. 1329-1342 ◽  
Author(s):  
Xiaolong Liu ◽  
Yiran Xia ◽  
Lulu Liu ◽  
Dongmei Zhang ◽  
Zhaosheng Hou

The purpose of this study is to offer a novel kind of polyurethane with improved surface blood compatibility for long-term implant biomaterials. In this work, the aliphatic poly(ester-urethane) (PEU) with uniform-size hard segments was prepared and the PEU surface was grafted with hydrophilic poly(ethylene glycol) (PEG). The PEU was obtained by chain-extension of poly(ɛ-caprolactone) (PCL) with isocyanate-terminated urethane triblock. Free amino groups were introduced onto the surface of PEU film via aminolysis with hexamethylenediamine, and then the NH2-grafted PEU surfaces (PEU-NH2) were reacted with isocyanate-terminated monomethoxyl PEG (MPEG-NCO) to obtain the PEG-grafted PEU surfaces (PEU-PEG). Analysis by nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and gel permeation chromatography were performed to confirm the chemical structures of the chain extender, PCL, PEU, and PEU-PEG. Additionally, the influence of aminolysis on the physical-mechanical properties of PEU films was investigated. Two glass transition temperatures and a broad endothermic peak were observed in the differential scanning calorimetry curves of PEU, which demonstrated a microphase-separated and semicrystalline structure, respectively. The PEU-PEG film exhibited excellent mechanical properties with an ultimate stress of ∼39 MPa and an elongation at break of ∼1190%, which was slightly lower than that of PEU, indicating that the aminolysis has little influence on the tensile properties. Evaluation of the blood compatibility of the films by bovine serum albumin adsorption and the platelet adhesion test revealed that the PEG-grafted surface had improved resistance to protein adsorption and excellent resistance to platelet adhesion. In vitro degradation tests showed that the PEU-PEG film could maintain its mechanical properties for more than six months and only lost ∼25% weight after 18 months. Due to the excellent mechanical properties, good blood compatibility and slow degradability, this novel kind of polyurethane hold significant promise for long-term implant biomaterials, especially soft tissue augmentation and regeneration.


2008 ◽  
Vol 2 ◽  
pp. 129-136 ◽  
Author(s):  
Ming Zhou ◽  
Jia Hong Yang ◽  
Xia Ye ◽  
Ao Ran Zheng ◽  
Gang Li ◽  
...  

Regular arrays of micro-pillars and nano-grooves structures on the silicon wafer are fabricated by using soft lithography, and the three dimension morphology of textured surface is observed by using scanning electron microscopy (SEM) and atomic force microscope (AFM). The static water contact angles are measured by using contact angle meter to characterize the wettabilities of these surfaces. To investigate how the presence of topography and the variations of wettability affect the haemocompatibility of textured surface contacted with blood, different patterned surfaces are designed and fabricated, and blood platelet adhesion test is carried out on these surfaces. The adhesion and coagulation of platelets are inspected by scanning electron microscopy (SEM). Experimental data presented in this paper indicate that different surface roughness and wettability are the important factors for blood platelet adhesion. The amount of adsorbed blood platelet is low on textured surfaces, compared with that on the flat surface. Especially, there is no coagulation and activation on the surface with nanometer grooves. That is to say, the superhydrophobic surface is apt to decrease blood platelet adhesion. The study suggests that surface with suitable wettabililty and textured structures exhibits superior blood compatibility.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3847
Author(s):  
Kiran R. Adhikari ◽  
Inessa Stanishevskaya ◽  
Pablo C. Caracciolo ◽  
Gustavo A. Abraham ◽  
Vinoy Thomas

In this work, we report the electrospinning and mechano-morphological characterizations of scaffolds based on blends of a novel poly(ester urethane urea) (PHH) and poly(dioxanone) (PDO). At the optimized electrospinning conditions, PHH, PDO and blend PHH/PDO in Hexafluroisopropanol (HFIP) solution yielded bead-free non-woven random nanofibers with high porosity and diameter in the range of hundreds of nanometers. The structural, morphological, and biomechanical properties were investigated using Differential Scanning Calorimetry, Scanning Electron Microscopy, Atomic Force Microscopy, and tensile tests. The blended scaffold showed an elastic modulus (~5 MPa) with a combination of the ultimate tensile strength (2 ± 0.5 MPa), and maximum elongation (150% ± 44%) in hydrated conditions, which are comparable to the materials currently being used for soft tissue applications such as skin, native arteries, and cardiac muscles applications. This demonstrates the feasibility of an electrospun PHH/PDO blend for cardiac patches or vascular graft applications that mimic the nanoscale structure and mechanical properties of native tissue.


2017 ◽  
Vol 68 (11) ◽  
pp. 2700-2703 ◽  
Author(s):  
Kamel Earar ◽  
Vasile Iulian Antoniac ◽  
Sorana Baciu ◽  
Simion Bran ◽  
Florin Onisor ◽  
...  

This study examined and compared surface of human dentine after acidic etching with hydrogen peroxide, phosphoric acid liquid and gel. Surface demineralization of dentin is necessary for a strong bond of adhesive at dental surface. Split human teeth were used. After application of mentioned substances at dentin level measures of the contact angle and surface morphology were employed. Surface morphology was analyzed with the help of scanning electron microscopy and atomic force microscopy. Liquid phosphoric acid yielded highest demineralization showing better hydrophobicity than the rest, thus having more contact surface. Surface roughness are less evident and formed surface micropores of 4 �m remained open after wash and air dry providing better adhesive canalicular penetration and subsequent bond.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2449
Author(s):  
Beata Kaczmarek-Szczepańska ◽  
Olha Mazur ◽  
Marta Michalska-Sionkowska ◽  
Krzysztof Łukowicz ◽  
Anna Maria Osyczka

In this study, hydrogels based on chitosan cross-linked by glyoxal have been investigated for potential medical applications. Hydrogels were loaded with tannic acid at different concentrations. The thermal stability and the polyphenol-releasing rate were determined. For a preliminary assessment of the clinical usefulness of the hydrogels, they were examined for blood compatibility and in the culture of human dental pulp cells (hDPC). The results showed that after immersion in a polyphenol solution, chitosan/glyoxal hydrogels remain nonhemolytic for erythrocytes, and we also did not observe the cytotoxic effect of hydrogels immersed in tannic acid (TA) solutions with different concentration. Tannic acid was successfully released from hydrogels, and its addition improved material thermal stability. Thus, the current findings open the possibility to consider such hydrogels in clinics.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 652
Author(s):  
Divine Sebastian ◽  
Chun-Wei Yao ◽  
Lutfun Nipa ◽  
Ian Lian ◽  
Gary Twu

In this work, a mechanically durable anticorrosion superhydrophobic coating is developed using a nanocomposite coating solution composed of silica nanoparticles and epoxy resin. The nanocomposite coating developed was tested for its superhydrophobic behavior using goniometry; surface morphology using scanning electron microscopy and atomic force microscopy; elemental composition using energy dispersive X-ray spectroscopy; corrosion resistance using atomic force microscopy; and potentiodynamic polarization measurements. The nanocomposite coating possesses hierarchical micro/nanostructures, according to the scanning electron microscopy images, and the presence of such structures was further confirmed by the atomic force microscopy images. The developed nanocomposite coating was found to be highly superhydrophobic as well as corrosion resistant, according to the results from static contact angle measurement and potentiodynamic polarization measurement, respectively. The abrasion resistance and mechanical durability of the nanocomposite coating were studied by abrasion tests, and the mechanical properties such as reduced modulus and Berkovich hardness were evaluated with the aid of nanoindentation tests.


Sign in / Sign up

Export Citation Format

Share Document