scholarly journals An Overview of AI-Assisted Design-on-Simulation Technology for Reliability Life Prediction of Advanced Packaging

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5342
Author(s):  
Sunil Kumar Panigrahy ◽  
Yi-Chieh Tseng ◽  
Bo-Ruei Lai ◽  
Kuo-Ning Chiang

Several design parameters affect the reliability of wafer-level type advanced packaging, such as upper and lower pad sizes, solder volume, buffer layer thickness, and chip thickness, etc. Conventionally, the accelerated thermal cycling test (ATCT) is used to evaluate the reliability life of electronic packaging; however, optimizing the design parameters through ATCT is time-consuming and expensive, reducing the number of experiments becomes a critical issue. In recent years, many researchers have adopted the finite-element-based design-on-simulation (DoS) technology for the reliability assessment of electronic packaging. DoS technology can effectively shorten the design cycle, reduce costs, and effectively optimize the packaging structure. However, the simulation analysis results are highly dependent on the individual researcher and are usually inconsistent between them. Artificial intelligence (AI) can help researchers avoid the shortcomings of the human factor. This study demonstrates AI-assisted DoS technology by combining artificial intelligence and simulation technologies to predict wafer level package (WLP) reliability. In order to ensure reliability prediction accuracy, the simulation procedure was validated by several experiments prior to creating a large AI training database. This research studies several machine learning models, including artificial neural network (ANN), recurrent neural network (RNN), support vector regression (SVR), kernel ridge regression (KRR), K-nearest neighbor (KNN), and random forest (RF). These models are evaluated in this study based on prediction accuracy and CPU time consumption.

2019 ◽  
Vol 35 (6) ◽  
pp. 829-837 ◽  
Author(s):  
P. H. Chou ◽  
K.N. Chiang ◽  
Steven Y. Liang

ABSTRACTFor electronic packaging structure, there are many design parameters that will affect its reliability performance, using experimental way to obtain the reliability result will take a considerable amount of time. Therefore, how to shorten the design time becomes a critical issue for new electronic packaging structure development. This research will combine artificial intelligence (AI) and simulation technology to assess the long-term reliability of wafer level packaging (WLP). A simulation technology using finite element method (FEM) with appropriate mechanics theories has been validated by multiple experiments will replace the experiment to create reliability results for different WLP structures. After a big WLP structure-reliability database created, this study will apply artificial neural network (ANN) theory to analyze this database and obtains a regression model for structure-reliability relationship of WLP. Once the regression model is established and validated, the WLP geometry, such as pad size, die and buffer layer thickness, and solder volume, etc. can be simply entered, and then the WLP reliability results can be immediately obtained through the ANN regression model.


2021 ◽  
Vol 11 (8) ◽  
pp. 3589
Author(s):  
Jiuxin Wang ◽  
Yutian Luo ◽  
Zhengming Yang ◽  
Xinli Zhao ◽  
Zhongkun Niu

In order to improve the measurement speed and prediction accuracy of unconventional reservoir parameters, the deep neural network (DNN) is used to predict movable fluid percentage of unconventional reservoirs. The Adam optimizer is used in the DNN model to ensure the stability and accuracy of the model in the gradient descent process, and the prediction effect is compared with the back propagation neural network (BPNN), K-nearest neighbor (KNN), and support vector regression model (SVR). During network training, L2 regularization is used to avoid over-fitting and improve the generalization ability of the model. Taking nuclear magnetic resonance (NMR) T2 spectrum data of laboratory unconventional core as input features, the influence of model hyperparameters on the prediction accuracy of reservoir movable fluids is also experimentally analyzed. Experimental results show that, compared with BPNN, KNN, and SVR, the deep neural network model has a better prediction effect on movable fluid percentage of unconventional reservoirs; when the model depth is five layers, the prediction accuracy of movable fluid percentage reaches the highest value, the predicted value of the DNN model is in high agreement with the laboratory measured value. Therefore, the movable fluid percentage prediction model of unconventional oil reservoirs based on the deep neural network model can provide certain guidance for the intelligent development of the laboratory’s reservoir parameter measurement.


Author(s):  
S. Vijaya Rani ◽  
G. N. K. Suresh Babu

The illegal hackers  penetrate the servers and networks of corporate and financial institutions to gain money and extract vital information. The hacking varies from one computing system to many system. They gain access by sending malicious packets in the network through virus, worms, Trojan horses etc. The hackers scan a network through various tools and collect information of network and host. Hence it is very much essential to detect the attacks as they enter into a network. The methods  available for intrusion detection are Naive Bayes, Decision tree, Support Vector Machine, K-Nearest Neighbor, Artificial Neural Networks. A neural network consists of processing units in complex manner and able to store information and make it functional for use. It acts like human brain and takes knowledge from the environment through training and learning process. Many algorithms are available for learning process This work carry out research on analysis of malicious packets and predicting the error rate in detection of injured packets through artificial neural network algorithms.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4520
Author(s):  
Luis Lopes Chambino ◽  
José Silvestre Silva ◽  
Alexandre Bernardino

Facial recognition is a method of identifying or authenticating the identity of people through their faces. Nowadays, facial recognition systems that use multispectral images achieve better results than those that use only visible spectral band images. In this work, a novel architecture for facial recognition that uses multiple deep convolutional neural networks and multispectral images is proposed. A domain-specific transfer-learning methodology applied to a deep neural network pre-trained in RGB images is shown to generalize well to the multispectral domain. We also propose a skin detector module for forgery detection. Several experiments were planned to assess the performance of our methods. First, we evaluate the performance of the forgery detection module using face masks and coverings of different materials. A second study was carried out with the objective of tuning the parameters of our domain-specific transfer-learning methodology, in particular which layers of the pre-trained network should be retrained to obtain good adaptation to multispectral images. A third study was conducted to evaluate the performance of support vector machines (SVM) and k-nearest neighbor classifiers using the embeddings obtained from the trained neural network. Finally, we compare the proposed method with other state-of-the-art approaches. The experimental results show performance improvements in the Tufts and CASIA NIR-VIS 2.0 multispectral databases, with a rank-1 score of 99.7% and 99.8%, respectively.


2021 ◽  
Vol 15 (6) ◽  
pp. 1812-1819
Author(s):  
Azita Yazdani ◽  
Ramin Ravangard ◽  
Roxana Sharifian

The new coronavirus has been spreading since the beginning of 2020 and many efforts have been made to develop vaccines to help patients recover. It is now clear that the world needs a rapid solution to curb the spread of COVID-19 worldwide with non-clinical approaches such as data mining, enhanced intelligence, and other artificial intelligence techniques. These approaches can be effective in reducing the burden on the health care system to provide the best possible way to diagnose and predict the COVID-19 epidemic. In this study, data mining models for early detection of Covid-19 in patients were developed using the epidemiological dataset of patients and individuals suspected of having Covid-19 in Iran. C4.5, support vector machine, Naive Bayes, logistic regression, Random Forest, and k-nearest neighbor algorithm were used directly on the dataset using Rapid miner to develop the models. By receiving clinical signs, this model diagnosis the risk of contracting the COVID-19 virus. Examination of the models in this study has shown that the support vector machine with 93.41% accuracy is more efficient in the diagnosis of patients with COVID-19 pandemic, which is the best model among other developed models. Keywords: COVID-19, Data mining, Machine Learning, Artificial Intelligence, Classification


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi139-vi139
Author(s):  
Jan Lost ◽  
Tej Verma ◽  
Niklas Tillmanns ◽  
W R Brim ◽  
Harry Subramanian ◽  
...  

Abstract PURPOSE Identifying molecular subtypes in gliomas has prognostic and therapeutic value, traditionally after invasive neurosurgical tumor resection or biopsy. Recent advances using artificial intelligence (AI) show promise in using pre-therapy imaging for predicting molecular subtype. We performed a systematic review of recent literature on AI methods used to predict molecular subtypes of gliomas. METHODS Literature review conforming to PRSIMA guidelines was performed for publications prior to February 2021 using 4 databases: Ovid Embase, Ovid MEDLINE, Cochrane trials (CENTRAL), and Web of Science core-collection. Keywords included: artificial intelligence, machine learning, deep learning, radiomics, magnetic resonance imaging, glioma, and glioblastoma. Non-machine learning and non-human studies were excluded. Screening was performed using Covidence software. Bias analysis was done using TRIPOD guidelines. RESULTS 11,727 abstracts were retrieved. After applying initial screening exclusion criteria, 1,135 full text reviews were performed, with 82 papers remaining for data extraction. 57% used retrospective single center hospital data, 31.6% used TCIA and BRATS, and 11.4% analyzed multicenter hospital data. An average of 146 patients (range 34-462 patients) were included. Algorithms predicting IDH status comprised 51.8% of studies, MGMT 18.1%, and 1p19q 6.0%. Machine learning methods were used in 71.4%, deep learning in 27.4%, and 1.2% directly compared both methods. The most common algorithm for machine learning were support vector machine (43.3%), and for deep learning convolutional neural network (68.4%). Mean prediction accuracy was 76.6%. CONCLUSION Machine learning is the predominant method for image-based prediction of glioma molecular subtypes. Major limitations include limited datasets (60.2% with under 150 patients) and thus limited generalizability of findings. We recommend using larger annotated datasets for AI network training and testing in order to create more robust AI algorithms, which will provide better prediction accuracy to real world clinical datasets and provide tools that can be translated to clinical practice.


2015 ◽  
Vol 13 (2) ◽  
pp. 50-58
Author(s):  
R. Khadim ◽  
R. El Ayachi ◽  
Mohamed Fakir

This paper focuses on the recognition of 3D objects using 2D attributes. In order to increase the recognition rate, the present an hybridization of three approaches to calculate the attributes of color image, this hybridization based on the combination of Zernike moments, Gist descriptors and color descriptor (statistical moments). In the classification phase, three methods are adopted: Neural Network (NN), Support Vector Machine (SVM), and k-nearest neighbor (KNN). The database COIL-100 is used in the experimental results.


Author(s):  
Mariana Kleina ◽  
◽  
Mateus Noronha dos Santos ◽  
Tiago Noronha dos Santos ◽  
Marcos Augusto Mendes Marques ◽  
...  

This study presents a classifier prediction in groups for the Brazilian Football Championship of both A and B leagues, from the results of the first half of each championship. With assertive predictions of the group where a team will end the championship, strategic planning can be performed in the squad, such as new hiring, specific training for athletes, and possible championships that the team will be entitled to participate in according to the group classification. In order to find the predictions, two techniques of artificial intelligence were applied: Multi-Layer Perceptron (MLP), which is a type of artificial neural network, and Support Vector Machine (SVM). Preliminary results show that the proposed methodology is very promising, with more than 40% successful cases with MLP and almost 50% with SVM. Moreover, results indicate that the methodology is able to make a reasonable prediction by missing one group of the true group at the end of the championship. The SVM technique was slightly better than MLP. A post-processing analysis of the SVM results was applied to the 2018 A league data from the Brazilian championship, resulting in 85% success indicator of groups.


2021 ◽  
Author(s):  
Jerome Asedegbega ◽  
Oladayo Ayinde ◽  
Alexander Nwakanma

Abstract Several computer-aided techniques have been developed in recent past to improve interpretational accuracy of subsurface geology. This paradigm shift has provided tremendous success in variety of Machine Learning Application domains and help for better feasibility study in reservoir evaluation using multiple classification techniques. Facies classification is an essential subsurface exploration task as sedimentary facies reflect associated physical, chemical, and biological conditions that formation unit experienced during sedimentation activity. This study however, employed formation samples for facies classification using Machine Learning (ML) techniques and classified different facies from well logs in seven (7) wells of the PORT Field, Offshore Niger Delta. Six wells were concatenated during data preparation and trained using supervised ML algorithms before validating the models by blind testing on one well log to predict discrete facies groups. The analysis started with data preparation and examination where various features of the available well data were conditioned. For the model building and performance, support vector machine, random forest, decision tree, extra tree, neural network (multilayer preceptor), k-nearest neighbor and logistic regression model were built after dividing the data sets into training, test, and blind test well data. Results of metric score for the blind test well estimated for the various models using Jaccard index and F1-score indicated 0.73 and 0.82 for support vector machine, 0.38 and 0.54 for random forest, 0.78 and 0.83 for extra tree, 0.91 and 0.95 for k-nearest neighbor, 0.41 and 0.56 for decision tree, 0.63 and 0.74 for logistic regression, 0.55 and 0.68 for neural network, respectively. The efficiency of ML techniques for enhancing the prediction accuracy and decreasing the procedure time and their approach toward the data, makes it importantly desirable to recommend them in subsurface facies classification analysis.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2814 ◽  
Author(s):  
Xiaoguang Liu ◽  
Huanliang Li ◽  
Cunguang Lou ◽  
Tie Liang ◽  
Xiuling Liu ◽  
...  

Falls are the major cause of fatal and non-fatal injury among people aged more than 65 years. Due to the grave consequences of the occurrence of falls, it is necessary to conduct thorough research on falls. This paper presents a method for the study of fall detection using surface electromyography (sEMG) based on an improved dual parallel channels convolutional neural network (IDPC-CNN). The proposed IDPC-CNN model is designed to identify falls from daily activities using the spectral features of sEMG. Firstly, the classification accuracy of time domain features and spectrograms are compared using linear discriminant analysis (LDA), k-nearest neighbor (KNN) and support vector machine (SVM). Results show that spectrograms provide a richer way to extract pattern information and better classification performance. Therefore, the spectrogram features of sEMG are selected as the input of IDPC-CNN to distinguish between daily activities and falls. Finally, The IDPC-CNN is compared with SVM and three different structure CNNs under the same conditions. Experimental results show that the proposed IDPC-CNN achieves 92.55% accuracy, 95.71% sensitivity and 91.7% specificity. Overall, The IDPC-CNN is more effective than the comparison in accuracy, efficiency, training and generalization.


Sign in / Sign up

Export Citation Format

Share Document