scholarly journals Multispectral Face Recognition Using Transfer Learning with Adaptation of Domain Specific Units

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4520
Author(s):  
Luis Lopes Chambino ◽  
José Silvestre Silva ◽  
Alexandre Bernardino

Facial recognition is a method of identifying or authenticating the identity of people through their faces. Nowadays, facial recognition systems that use multispectral images achieve better results than those that use only visible spectral band images. In this work, a novel architecture for facial recognition that uses multiple deep convolutional neural networks and multispectral images is proposed. A domain-specific transfer-learning methodology applied to a deep neural network pre-trained in RGB images is shown to generalize well to the multispectral domain. We also propose a skin detector module for forgery detection. Several experiments were planned to assess the performance of our methods. First, we evaluate the performance of the forgery detection module using face masks and coverings of different materials. A second study was carried out with the objective of tuning the parameters of our domain-specific transfer-learning methodology, in particular which layers of the pre-trained network should be retrained to obtain good adaptation to multispectral images. A third study was conducted to evaluate the performance of support vector machines (SVM) and k-nearest neighbor classifiers using the embeddings obtained from the trained neural network. Finally, we compare the proposed method with other state-of-the-art approaches. The experimental results show performance improvements in the Tufts and CASIA NIR-VIS 2.0 multispectral databases, with a rank-1 score of 99.7% and 99.8%, respectively.

2019 ◽  
Vol 36 (10) ◽  
pp. 1945-1956
Author(s):  
Qian Li ◽  
Shaoen Tang ◽  
Xuan Peng ◽  
Qiang Ma

AbstractAtmospheric visibility is an important element of meteorological observation. With existing methods, defining image features that reflect visibility accurately and comprehensively is difficult. This paper proposes a visibility detection method based on transfer learning using deep convolutional neural networks (DCNN) that addresses issues caused by a lack of sufficient visibility labeled datasets. In the proposed method, each image was first divided into several subregions, which were encoded to extract visual features using a pretrained no-reference image quality assessment neural network. Then a support vector regression model was trained to map the extracted features to the visibility. The fusion weight of each subregion was evaluated according to the error analysis of the regression model. Finally, the neural network was fine-tuned to better fit the problem of visibility detection using the current detection results conversely. Experimental results demonstrated that the detection accuracy of the proposed method exceeds 90% and satisfies the requirements of daily observation applications.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0242269
Author(s):  
Diaa Salama AbdELminaam ◽  
Abdulrhman M. Almansori ◽  
Mohamed Taha ◽  
Elsayed Badr

The development of biometric applications, such as facial recognition (FR), has recently become important in smart cities. Many scientists and engineers around the world have focused on establishing increasingly robust and accurate algorithms and methods for these types of systems and their applications in everyday life. FR is developing technology with multiple real-time applications. The goal of this paper is to develop a complete FR system using transfer learning in fog computing and cloud computing. The developed system uses deep convolutional neural networks (DCNN) because of the dominant representation; there are some conditions including occlusions, expressions, illuminations, and pose, which can affect the deep FR performance. DCNN is used to extract relevant facial features. These features allow us to compare faces between them in an efficient way. The system can be trained to recognize a set of people and to learn via an online method, by integrating the new people it processes and improving its predictions on the ones it already has. The proposed recognition method was tested with different three standard machine learning algorithms (Decision Tree (DT), K Nearest Neighbor(KNN), Support Vector Machine (SVM)). The proposed system has been evaluated using three datasets of face images (SDUMLA-HMT, 113, and CASIA) via performance metrics of accuracy, precision, sensitivity, specificity, and time. The experimental results show that the proposed method achieves superiority over other algorithms according to all parameters. The suggested algorithm results in higher accuracy (99.06%), higher precision (99.12%), higher recall (99.07%), and higher specificity (99.10%) than the comparison algorithms.


Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 963 ◽  
Author(s):  
Shamila Akhtar ◽  
Fawad Hussain ◽  
Fawad Riasat Raja ◽  
Muhammad Ehatisham-ul-haq ◽  
Naveed Khan Baloch ◽  
...  

Computer-Aided Language Learning (CALL) is growing nowadays because learning new languages is essential for communication with people of different linguistic backgrounds. Mispronunciation detection is an integral part of CALL, which is used for automatic pointing of errors for the non-native speaker. In this paper, we investigated the mispronunciation detection of Arabic words using deep Convolution Neural Network (CNN). For automated pronunciation error detection, we proposed CNN features-based model and extracted features from different layers of Alex Net (layers 6, 7, and 8) to train three machine learning classifiers; K-nearest neighbor (KNN), Support Vector Machine (SVM) and Random Forest (RF). We also used a transfer learning-based model in which feature extraction and classification are performed automatically. To evaluate the performance of the proposed method, a comprehensive evaluation is provided on these methods with a traditional machine learning-based method using Mel Frequency Cepstral Coefficients (MFCC) features. We used the same three classifiers KNN, SVM, and RF in the baseline method for mispronunciation detection. Experimental results show that with handcrafted features, transfer learning-based method and classification based on deep features extracted from Alex Net achieved an average accuracy of 73.67, 85 and 93.20 on Arabic words, respectively. Moreover, these results reveal that the proposed method with feature selection achieved the best average accuracy of 93.20% than all other methods.


Author(s):  
S. Vijaya Rani ◽  
G. N. K. Suresh Babu

The illegal hackers  penetrate the servers and networks of corporate and financial institutions to gain money and extract vital information. The hacking varies from one computing system to many system. They gain access by sending malicious packets in the network through virus, worms, Trojan horses etc. The hackers scan a network through various tools and collect information of network and host. Hence it is very much essential to detect the attacks as they enter into a network. The methods  available for intrusion detection are Naive Bayes, Decision tree, Support Vector Machine, K-Nearest Neighbor, Artificial Neural Networks. A neural network consists of processing units in complex manner and able to store information and make it functional for use. It acts like human brain and takes knowledge from the environment through training and learning process. Many algorithms are available for learning process This work carry out research on analysis of malicious packets and predicting the error rate in detection of injured packets through artificial neural network algorithms.


2015 ◽  
Vol 13 (2) ◽  
pp. 50-58
Author(s):  
R. Khadim ◽  
R. El Ayachi ◽  
Mohamed Fakir

This paper focuses on the recognition of 3D objects using 2D attributes. In order to increase the recognition rate, the present an hybridization of three approaches to calculate the attributes of color image, this hybridization based on the combination of Zernike moments, Gist descriptors and color descriptor (statistical moments). In the classification phase, three methods are adopted: Neural Network (NN), Support Vector Machine (SVM), and k-nearest neighbor (KNN). The database COIL-100 is used in the experimental results.


2021 ◽  
Author(s):  
Jerome Asedegbega ◽  
Oladayo Ayinde ◽  
Alexander Nwakanma

Abstract Several computer-aided techniques have been developed in recent past to improve interpretational accuracy of subsurface geology. This paradigm shift has provided tremendous success in variety of Machine Learning Application domains and help for better feasibility study in reservoir evaluation using multiple classification techniques. Facies classification is an essential subsurface exploration task as sedimentary facies reflect associated physical, chemical, and biological conditions that formation unit experienced during sedimentation activity. This study however, employed formation samples for facies classification using Machine Learning (ML) techniques and classified different facies from well logs in seven (7) wells of the PORT Field, Offshore Niger Delta. Six wells were concatenated during data preparation and trained using supervised ML algorithms before validating the models by blind testing on one well log to predict discrete facies groups. The analysis started with data preparation and examination where various features of the available well data were conditioned. For the model building and performance, support vector machine, random forest, decision tree, extra tree, neural network (multilayer preceptor), k-nearest neighbor and logistic regression model were built after dividing the data sets into training, test, and blind test well data. Results of metric score for the blind test well estimated for the various models using Jaccard index and F1-score indicated 0.73 and 0.82 for support vector machine, 0.38 and 0.54 for random forest, 0.78 and 0.83 for extra tree, 0.91 and 0.95 for k-nearest neighbor, 0.41 and 0.56 for decision tree, 0.63 and 0.74 for logistic regression, 0.55 and 0.68 for neural network, respectively. The efficiency of ML techniques for enhancing the prediction accuracy and decreasing the procedure time and their approach toward the data, makes it importantly desirable to recommend them in subsurface facies classification analysis.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2814 ◽  
Author(s):  
Xiaoguang Liu ◽  
Huanliang Li ◽  
Cunguang Lou ◽  
Tie Liang ◽  
Xiuling Liu ◽  
...  

Falls are the major cause of fatal and non-fatal injury among people aged more than 65 years. Due to the grave consequences of the occurrence of falls, it is necessary to conduct thorough research on falls. This paper presents a method for the study of fall detection using surface electromyography (sEMG) based on an improved dual parallel channels convolutional neural network (IDPC-CNN). The proposed IDPC-CNN model is designed to identify falls from daily activities using the spectral features of sEMG. Firstly, the classification accuracy of time domain features and spectrograms are compared using linear discriminant analysis (LDA), k-nearest neighbor (KNN) and support vector machine (SVM). Results show that spectrograms provide a richer way to extract pattern information and better classification performance. Therefore, the spectrogram features of sEMG are selected as the input of IDPC-CNN to distinguish between daily activities and falls. Finally, The IDPC-CNN is compared with SVM and three different structure CNNs under the same conditions. Experimental results show that the proposed IDPC-CNN achieves 92.55% accuracy, 95.71% sensitivity and 91.7% specificity. Overall, The IDPC-CNN is more effective than the comparison in accuracy, efficiency, training and generalization.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Renzhou Gui ◽  
Tongjie Chen ◽  
Han Nie

With the continuous development of science, more and more research results have proved that machine learning is capable of diagnosing and studying the major depressive disorder (MDD) in the brain. We propose a deep learning network with multibranch and local residual feedback, for four different types of functional magnetic resonance imaging (fMRI) data produced by depressed patients and control people under the condition of listening to positive- and negative-emotions music. We use the large convolution kernel of the same size as the correlation matrix to match the features and obtain the results of feature matching of 264 regions of interest (ROIs). Firstly, four-dimensional fMRI data are used to generate the two-dimensional correlation matrix of one person’s brain based on ROIs and then processed by the threshold value which is selected according to the characteristics of complex network and small-world network. After that, the deep learning model in this paper is compared with support vector machine (SVM), logistic regression (LR), k-nearest neighbor (kNN), a common deep neural network (DNN), and a deep convolutional neural network (CNN) for classification. Finally, we further calculate the matched ROIs from the intermediate results of our deep learning model which can help related fields further explore the pathogeny of depression patients.


Sign in / Sign up

Export Citation Format

Share Document