scholarly journals Integrating Electronics to Textiles by Ultrasonic Welding for Cable-Driven Applications for Smart Textiles

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5735
Author(s):  
Sebastian Micus ◽  
Sahar Golmohammadi Rostami ◽  
Michael Haupt ◽  
Götz T. Gresser ◽  
Milad Alizadeh Meghrazi ◽  
...  

The connection between flexible textiles and stiff electronic components has always been structurally weak and a limiting factor in the establishment of smart textiles in our everyday life. This paper focuses on the formation of reliable connections between conductive textiles and conventional litz wires using ultrasonic welding. The paper offers a promising approach to solving this problem. The electrical and mechanical performance of the samples were investigated after 15 and 30 wash-and-dry cycles in a laundry machine. Here the contact resistances and their peeling strength were measured. Furthermore, their connection properties were analysed in microsections. The resistance of the joints increased more than 300%, because the silver-coated wires suffered under the laundry cycles. Meanwhile, the mechanical strength during the peeling test decreased by only about 20% after 15 cycles and remained the same after 30 cycles. The good results obtained in this study suggest that ultrasonic welding offers a useful approach to the connection of textile electronics to conductive wires and to the manufacture of smart textiles.

2008 ◽  
Vol 1129 ◽  
Author(s):  
Joo-Hyung Kim ◽  
Kwangsun Kang ◽  
Sungryul Yun ◽  
Sangyeul Yang ◽  
Min-Hee Lee ◽  
...  

AbstractCellulose electro-active paper (EAPap) has attracted much attention as a new smart electronic material to be utilized as mechanical sensors, bio compatible applications and wireless communications. The thin EAPap film has many advantages such as lightweight, flexible, dryness, biodegradable, easy to chemically modify, cheap and abundance. Also EAPap film has a good reversibility for mechanical performance, such as bending movement, under electric field. The main actuation mechanism governed by piezoelectric property can be modulated by material direction and stretching ratio during process. In this paper we present the overview as well as fabrication process of cellulose EAPap as a novel smart material. Also we propose the method to enhance the piezoelectricity, its mechanical and electromechanical properties. In addition, the fabrication of high quality metal patterns with Schottky diode on the cellulose surface is an initiating stage for the integration of the EAPap actuator and electronic components. The integration of flexible actuator and electronic elements has huge potential application including flying magic carpets, microwave driven flying insets and micro-robots and smart wall papers.


Author(s):  
Renangi Sandeep ◽  
Arivazhagan Natarajan

In the twenty-first century, the application of carbon fiber reinforced polymer (CFRP) materials in the vehicle industry are growing rapidly due to lightweight, high specific strength, and elasticity. In the automobile and aerospace industries, CFRP needs to be joined with metals to build complete structures. The demand for hybrid structures has prompted research into the combination of CFRP and metals in manufacturing. Aluminium and CFRP structures combine the mechanical properties of aluminium with the superior physical and chemical properties of CFRP. However, joining dissimilar materials is often challenging to achieve. Various joining technologies are developed to produce hybrid joints of CFRP, and aluminium alloys include conventional adhesives, mechanical and thermal joining technologies. In this review article, an extensive review was carried out on the thermal joining technologies include laser welding, friction-based welding technologies, ultrasonic welding, and induction welding processes. The article primarily focused on the current knowledge and process development of these technologies in fabricating dissimilar aluminium and CFRP structures. Besides, according to Industry 4.0 requirements, additive manufacturing-based techniques to fabricate hybrid structures are presented. Finally, this article also addressed the various improvements for the future development of these joining technologies. Ultrasonic welding yields the maximum shear strength among the various hybrid joining technologies due to lower heat input. On the other hand, laser welding produces higher heat input, which deteriorates the mechanical performance of the hybrid joints. Surface pretreatments on material surfaces prior to joining showed a significant effect on joint shear strength. Surface modification using anodizing is considered an optimal method to improve wettability, increasing mechanical interlocking phenomena.


2016 ◽  
Vol 27 (3) ◽  
pp. 67-72
Author(s):  
S. Abdul Gafoor ◽  
M Mohan Raj

Abstract Over the past 40 years, technology has dramatically affected the field of upper limb prosthesis. With improvement in the electronics industry, along with advances in the miniaturisation and mass production of electronic components, myoelectrically controlled prosthesis has become reliable and widespread in their use. Compared to lower extremity amputees, the acceptance of prosthetic replacement is less in upper extremity amputees. This may be due to different factors like functional needs, cosmetic factors, motivation of the patient, inadequate training following conventional prosthetic fitment, etc. More and more developments are going on in upper limb extremity prosthesis which will fulfill the need of the upper limb amputees. Such developments ensure better rehabilitation though cost is a limiting factor. This article is an earnest attempt to review the recent trends in upper limb prosthetics.


2020 ◽  
Vol 54 (22) ◽  
pp. 3081-3098 ◽  
Author(s):  
Eirini Tsiangou ◽  
Sofia Teixeira de Freitas ◽  
Irene Fernandez Villegas ◽  
Rinze Benedictus

Ultrasonic welding is a highly promising technique for joining thermoplastic to thermoset composites. A neat thermoplastic coupling layer is co-cured on the surface to be welded to make the thermoset composite ‘weldable’. A reliable bond is attained when miscible thermoplastic and thermoset materials are chosen. For welding carbon fibre/polyetheretherketone (PEEK) to thermoset composite samples, a PEEK film is not preferable due to its immiscibility with epoxy resins. On the other hand, polyetherimide is an excellent candidate, since it is known to be miscible to most epoxy systems at high temperatures and PEEK polymers. This study focusses on two main subjects; firstly, the nature of the material of the energy director, i.e. a flat thermoplastic film used to promote heat generation at the interface. In this case, the energy director can be either polyetherimide, as in the coupling layer or PEEK material, as in the matrix of the thermoplastic composite adherend. It was found that both materials can produce welds with similar mechanical performance. This study focusses secondly on the thickness of the coupling layer. Due to the high melting temperature of the PEEK matrix, a 60-µm-thick coupling layer was seemingly too thin to act as a thermal barrier for the epoxy resin for heating times long enough to produce fully welded joints. Such an issue was found to be overcome by increasing the thickness of the coupling layer to 250 µm, which resulted in high-strength welds.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2429
Author(s):  
Sebastian Micus ◽  
Michael Haupt ◽  
Götz T. Gresser

Experts attest the smart textiles market will have high growth potential during the next ten years. Laser soldering is considered to be a good contacting method because it is a contactless process. For this reason, it is intended to investigate the contacting process of printed circuit boards (PCB) to isolated conductive textile strips by means of a ytterbium-doped fiber laser (1064 nm). During the investigation, the copper strands in the textile tape were stripped by the laser and soldered to the PCB without any transport of the textile. Therefore, we investigated different sets of parameters by means of a design of experiment (DoE) for different types of solder pastes. Finally, the joinings were electrically analyzed using a contact resistance test, optically with a REM examination, and mechanically using a peeling test.


Author(s):  
M. Khoshgoftar ◽  
C. C. van Donkelaar ◽  
K. Ito

A promising treatment for damaged cartilage is to replace it with tissue-engineered (TE) cartilage. However, the insufficient load-bearing capacity of today’s TE cartilage is an important limiting factor in its clinical application. In native cartilage, collagen fibers resist tension and proteoglycans (PG’s) attract water through osmotic pressure and resist its flow, which allows cartilage to withstand high compressive forces. One of the main challenges for tissue engineering of mechanically stable cartilage is therefore to find the cues to create an engineered tissue with an ultrastructure similar to that of native tissue. Currently, it is possible to tissue engineer cartilage with almost native PG content but collagen reaches only 1/4 of the native content [1]. Furthermore, the specific depth dependent arcade-like organization of collagen in native cartilage (i.e. vertical fibers in the deep zone and horizontal fibers in the superficial zone), which is optimized for distributing loads, has not been addressed in TE’d cartilage. However, the relative importance of matrix component content and collagen network architecture to the mechanical performance of TE cartilage is poorly understood, perhaps because this would require substantial effort on time consuming and labor-intensive experimental studies. The aim of this study is to explore if it is sufficient to produce a tissue with abundant proteoglycans and/or collagen, or whether reproducing the specific arcade-like collagen network in the implant is essential to develop sufficient load-bearing capacity, using a numerical approach.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5113
Author(s):  
Abdella Ahmmed Simegnaw ◽  
Benny Malengier ◽  
Gideon Rotich ◽  
Melkie Getnet Tadesse ◽  
Lieva Van Langenhove

Modern electronic textiles are moving towards flexible wearable textiles, so-called e-textiles that have micro-electronic elements embedded onto the textile fabric that can be used for varied classes of functionalities. There are different methods of integrating rigid microelectronic components into/onto textiles for the development of smart textiles, which include, but are not limited to, physical, mechanical, and chemical approaches. The integration systems must satisfy being flexible, lightweight, stretchable, and washable to offer a superior usability, comfortability, and non-intrusiveness. Furthermore, the resulting wearable garment needs to be breathable. In this review work, three levels of integration of the microelectronics into/onto the textile structures are discussed, the textile-adapted, the textile-integrated, and the textile-based integration. The textile-integrated and the textile-adapted e-textiles have failed to efficiently meet being flexible and washable. To overcome the above problems, researchers studied the integration of microelectronics into/onto textile at fiber or yarn level applying various mechanisms. Hence, a new method of integration, textile-based, has risen to the challenge due to the flexibility and washability advantages of the ultimate product. In general, the aim of this review is to provide a complete overview of the different interconnection methods of electronic components into/onto textile substrate.


2014 ◽  
Vol 1038 ◽  
pp. 83-88
Author(s):  
Werner Karl Schomburg ◽  
Ji Li ◽  
Sijie Liao ◽  
Christof Gerhardy ◽  
Johannes Sackmann

Electronic circuit boards have been fabricated in cycle times of a few seconds by ultrasonic fabrication. A stack of thermoplastic polymer foils with a copper layer, 20 μm in thickness, on top is transformed into a polymer carrier with separated conductor paths. This process is accomplished in cycle times of a few seconds and the required equipment is just a commercially available ultrasonic welding machine and a metal tool micro patterned, e.g., by milling.Since soldering is often not possible on a thermoplastic carrier, electronic components are joined to the conductor paths by ultrasonic welding. This is achieved by employing an anisotropic conductive foil containing metal particles providing the electrical contact normal to the foil and showing no conductivity in lateral direction. The anisotropic conductive foil also serves as glue between circuit board and electronic components.


Author(s):  
D. J. De Kock ◽  
M. Nagulapally ◽  
J. A. Visser ◽  
R. Nair ◽  
J. Nigen

The thermal design of electronic enclosures is becoming more important as the demand for smaller, lighter systems with better performance increases. The limiting factor on the lifetime of these systems is the maximum temperature of the electronic components. Nowadays in some systems, the thermal design is the limiting factor for performance increases. A simple yet effective design method that yields optimum designs is therefore required to design these systems. Traditionally, experimental methods were used in the design of electronic enclosures. More recently Computational Fluid Dynamics (CFD) has established itself as a viable alternative to reduce the number of experimentation required, resulting in a reduction in the time scales and cost of the design process. The CFD process is usually applied on a trial and error basis and relies heavily on the insight and experience of the designer to improve designs. Even an experienced designer will only be able to improve the design and does not necessarily guarantee optimum results. A more efficient design method is to combine a mathematical optimizer with CFD. In this study the mathematical optimization method, DYNAMIC-Q, is linked with the commercial CFD package, Icepak to optimize different electronic enclosures. The method is applied to the following design situations commonly found in electronics enclosures. The first case is that of the optimization outlet grille of a telecommunications rack to reduce the electromagnetic interference without exceeding a specified temperature in the rack. The second case involves the optimum placement of electronic components on a printed circuit board to minimize the maximum temperatures of the components. The third case deals with flow through an electronic enclosure cooled by fans placed on the wall of the enclosures. The geometrical arrangement of boards and components on the boards in these enclosures might result in unequal flow distribution between the boards. For this purpose air flow filters of varying free-area ratios are used to make the flow rates between the boards more uniform. The free-area ratios of three filters are determined in order to maximize the total flow rate through system with the added constraint that the flow rates through each of the three filters are within 5% of each other. The last case deals with flow through a simplified notebook where the CPU temperature is minimized by changing the position of two exhaust fans. The study shows that mathematical optimization is a powerful tool that can be combined with CFD to yield optimum designs.


Author(s):  
Abdella Ahmmed Simegnaw ◽  
Benny Malengier ◽  
Gideon K. Rotich ◽  
Melkie Getnet Tadesse ◽  
Lieva Van Langenhove

Modern electronic textiles are moving towards flexible wearable textiles, so-called e-textiles that have micro-electronic elements embedded onto the textile fabric that can be used for varied classes of functionalities. There are different methods of integrating rigid microelectronic components into/onto textiles for the development of smart textiles, which include, but are not limited to, physical, mechanical and chemical approaches. The integration systems must satisfy being flexible, lightweight, stretchable and washable to offer a superior usability, comfortability and non-intrusiveness. Furthermore, the resulting wearable garment needs to be breathable. In this review work, three levels of integration of the microelectronics into/onto the textile structures are discussed, the textile-adapted, the textile-integrated, and the textile-based integration. The textile-integrated and the textile- adapted e-textiles have failed to efficiently meet being flexible and washable. To overcome the above problems, researchers studied the integration of microelectronics into/onto textile at fiber or yarn level applying various mechanisms. Hence, a new method of integration, textile-based, has risen to the challenge due to the flexibility and washability advantages of the ultimate product. In general, the aim of this review is to provide a complete overview of the different interconnection methods of electronic components into/onto textile substrate.


Sign in / Sign up

Export Citation Format

Share Document