scholarly journals Preparation, Characterization, and Biocompatibility Assessment of Polymer-Ceramic Composites Loaded with Salvia officinalis Extract

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6000
Author(s):  
Dagmara Słota ◽  
Wioletta Florkiewicz ◽  
Karina Piętak ◽  
Aleksandra Szwed ◽  
Marcin Włodarczyk ◽  
...  

In the present work, hydroxyapatite-polymer materials were developed. The preparation, as well as characterization of the ceramic-polymer composites based on polyvinylpyrrolidone, sodium alginate, and gelatin were described. The system was enriched with the addition of common sage extract (Salvia officinalis). The antioxidant potential of sage aqueous extract and total polyphenol content was determined. The antioxidant capacity and total phenolic content of extract were equal to 86.06 ± 0,49% and 16.21 ± 0,58 mg gallic acid equivalents per gram of dry weight, respectively. Incubation studies in selected biological liquids were carried out to determine the biomineralization capacity on the surface of the composites and to examine the kinetics of release of the active substances from within the material. As a result of the incubation, a gradual release of the extract over time from the polymer matrix was observed; moreover, the appearance of new apatite layers on the composite surface was recorded as early as after 14 days, which was also confirmed by energy-dispersive X-ray spectroscopy (EDS) microanalysis. The composites were analyzed with Fourier transform infrared spectroscopy (FTIR) spectroscopy, and the morphology was recorded by scanning electron microscope (SEM) imaging. The in vitro biological studies allowed their cytotoxic effect on the reference L929 fibroblasts to be excluded. Further analysis of the biomaterials showed that enrichment with polyphenols does not support the adhesion of L929 cells to the surface of the material. However, the addition of these natural components stimulates human monocytes that constitute the first step of tissue regeneration.

Author(s):  
Venkanna Banothu ◽  
Uma Adepally ◽  
Jayalakshmi Lingam

Objective: To estimate the in vitro total phenolics, flavonoids contents, antioxidant and antimicrobial activities of various solvent extracts from the medicinal plant Physalis minima Linn.Methods: The crude bioactive were extracted from the dried powder of Physalis minima using methanol, ethyl acetate, chloroform and hexane solvents. Total phenolic content (TPC) and total flavonoid content (TFC) were estimated using Folin-Ciocalteu and aluminium chloride colorimetric methods respectively. 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2’-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and ferric reducing antioxidant power (FRAP) assays were used to determine the in vitro antioxidant capacity. The antimicrobial assay was done through agar well diffusion; minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined using broth microdilution methods against the Gram-negative bacteria (Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris) and Gram-positive bacteria (Staphylococcus aureus).Results: TPC expressed as gallic acid equivalents (GAE) ranged from 60.27±1.73-151.25±2.50 mg GAE/g dry weight, and TFC expressed as quercetin equivalents (QE) ranged from 56.66±0.80-158.84±2.30 mg QE/g dry weight. Methanol extract showed the highest antioxidant activity followed by ethyl acetate, chloroform, hexane extract and the IC50 values of methanol extract for scavenging DPPH and ABTS free radicals were 280.23±5.75-173.40±0.38µg/ml, respectively. All the extracts have shown potent antimicrobial activity for the zone of inhibition ranged from 9-35 mm; MICs and MBCs values ranged from 0.125-4.0 and 0.25-8.0 mg/ml, respectively towards tested pathogenic species.Conclusion: The comprehensive analysis of the present results demonstrated that Physalis minima possess high potential antioxidant properties which could be used as a viable source of natural antioxidants in treating infections caused by above-mentioned pathogens.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
A. Vijayalakshmi ◽  
P. R. Kumar ◽  
S. Sakthi Priyadarsini ◽  
C. Meenaxshi

Aim. The present study aimed to isolate flavonoid fraction from the aerial parts ofCissus quadrangularisand to evaluate its antioxidant and anticancer potential usingin vitroassay system.Methods. Total phenolic and flavonoid contents were calculated for the drug. Flavonoid fraction was isolated using column chromatography and analysed using HPLC.In vitro, antioxidant activity of the ethanol extract and isolated flavonoid fraction was investigated by nitric oxide, DPPH and hydroxyl radical scavenging assays. Breast cancer (MCF 7) cell line was used as thein vitrocancer model for MTT assay.Result. The amount of total phenolic content and total flavonoid content in the ethanol extract showed 28.6 mg/g dry weight expressed as gallic acid equivalents, and 15.8 mg/g was expressed as quercetin equivalents, respectively. The tested extract showed good dose-dependent free radical scavenging property in all the models with the IC50values of 98 μg/mL, 125 μg/mL, and 96 μg/mL for ethanol extract and 10 μg/mL, 12 μg/mL, and 10 μg/mL for flavonoid fraction, respectively. The flavonoid fraction possess potent anticancer property against breast cancer cells (MCF7) with IC50value of 40 μg/mL.Conclusions. It can be concluded that the aerial part ofCissus quadrangularishas potential antioxidant and anticancer activities.


2015 ◽  
Vol 59 (11) ◽  
pp. 6741-6748 ◽  
Author(s):  
Meha P. Patel ◽  
Bartlomiej G. Fryszczyn ◽  
Timothy Palzkill

ABSTRACTThe widespread use of oxyimino-cephalosporin antibiotics drives the evolution of the CTX-M family of β-lactamases that hydrolyze these drugs and confer antibiotic resistance. Clinically isolated CTX-M enzymes carrying the P167S or D240G active site-associated adaptive mutation have a broadened substrate profile that includes the oxyimino-cephalosporin antibiotic ceftazidime. The D240G substitution is known to reduce the stability of CTX-M-14 β-lactamase, and the P167S substitution is shown here to also destabilize the enzyme. Proteins are marginally stable entities, and second-site mutations that stabilize the enzyme can offset a loss in stability caused by mutations that enhance enzyme activity. Therefore, the evolution of antibiotic resistance enzymes can be dependent on the acquisition of stabilizing mutations. The A77V substitution is present in CTX-M extended-spectrum β-lactamases (ESBLs) from a number of clinical isolates, suggesting that it may be important in the evolution of antibiotic resistance in this family of β-lactamases. In this study, the effects of the A77V substitution in the CTX-M-14 model enzyme were characterized with regard to the kinetic parameters for antibiotic hydrolysis as well as enzyme expression levelsin vivoand protein stabilityin vitro. The A77V substitution has little effect on the kinetics of oxyimino-cephalosporin hydrolysis, but it stabilizes the CTX-M enzyme and compensates for the loss of stability resulting from the P167S and D240G mutations. The acquisition of global stabilizing mutations, such as A77V, is an important feature in β-lactamase evolution and a common mechanism in protein evolution.


2007 ◽  
Vol 178 (1) ◽  
pp. 43-56 ◽  
Author(s):  
Anjon Audhya ◽  
Arshad Desai ◽  
Karen Oegema

The endoplasmic reticulum (ER) is a contiguous network of interconnected membrane sheets and tubules. The ER is differentiated into distinct domains, including the peripheral ER and nuclear envelope. Inhibition of two ER proteins, Rtn4a and DP1/NogoA, was previously shown to inhibit the formation of ER tubules in vitro. We show that the formation of ER tubules in vitro also requires a Rab family GTPase. Characterization of the 29 Caenorhabditis elegans Rab GTPases reveals that depletion of RAB-5 phenocopies the defects in peripheral ER structure that result from depletion of RET-1 and YOP-1, the C. elegans homologues of Rtn4a and DP1/NogoA. Perturbation of endocytosis by other means did not affect ER structure; the role of RAB-5 in ER morphology is thus independent of its well-studied requirement for endocytosis. RAB-5 and YOP-1/RET-1 also control the kinetics of nuclear envelope disassembly, which suggests an important role for the morphology of the peripheral ER in this process.


2011 ◽  
Vol 7 (2) ◽  
pp. 1287-1295
Author(s):  
Mharti Fatima-Zohra ◽  
Abdellaoui Abdelfattah ◽  
Kamal Ibtisam ◽  
Lyoussi Badiaa ◽  
Allaf Tamara ◽  
...  

The main objective of this study was to intensify the extraction of total phenols from Salvia officinalis L. using instant controlled pressure drop (DIC) as a texturing pre-treatment. The effect of solvent type on Total Phenolic Content (TPC) was also studied. TPC was determined using spectrophotometric Folin-Ciocalteau method and external calibration with Gallic acid. The obtained results showed that water was the most efficient solvent to extract total phenols from Salvia officinalis L. Moreover, texturing and expansion by DIC pretreatment had a great impact on polyphenol yields and revealed greater extraction kinetics. Likewise, drying kinetics of DIC-treated sage was enhanced compared to the raw material. DIC-assisted extraction can be considered as a promising technology to use in the case of the Moroccan Salvia officinalis L. as an important Mediterranean source of natural phenols.


2011 ◽  
Vol 74 (1) ◽  
pp. 17-21 ◽  
Author(s):  
Izabela Grzegorczyk ◽  
Ireneusz Bilichowski ◽  
Elżbieta Mikiciuk-Olasik ◽  
Halina Wysokińska

The concentrations of carnosic acid, carnosol and rosmarinic acid in different materials from differentiated (multiple shoot cultures and regenerated plants) and undifferentiated (callus and cell suspension) in vitro cultures of <em>Salvia officinalis</em> were determined by HPLC. The results suggested that diterpenoid (carnosic acid and carnosol) production is closely related to shoot differentiation. The highest diterpenoid yield (11.4 mg g<sup>-1</sup> for carnosic acid and 1.1 mg g<sup>-1</sup> for carnosol) was achieved in shoots of 10-week-old micropropagated plants. The levels were comparable to those found in shoots of naturally growing plants. Undifferentiated callus and cell suspension cultures produced only very low amounts of carnosol (ca. 0.05 mg g<sup>-1</sup> of dry weight). In contrast, content of rosmarinic acid in callus and suspension cultures as well as shoots growing in vitro and in vivo was similar and ranged between 11.2 and 18.6 mg g<sup>-1</sup> of dry weight.


2020 ◽  
Vol 10 (17) ◽  
pp. 6007 ◽  
Author(s):  
Yung-Sheng Lin ◽  
Wen-Shin Lin ◽  
Jing-Wen Tung ◽  
Ya-Chih Cheng ◽  
Min-Yun Chang ◽  
...  

In this study, the effects of different fruit parts and extraction conditions on the antioxidant properties of jujube (Ziziphus jujuba Mill.) fruit were investigated. Five in vitro antioxidant models and statistical analyses were performed. The results revealed that jujube peel with pulp (peel pulp) exhibited better antioxidant capacity than did seeds. Overall, jujube peel pulp extracted using 50% ethanol at 60 °C exhibited the best antioxidant capacity in terms of 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (0.3 ± 0 mg/mL), 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity (0.5 ± 0 mg/mL), total phenolic content (38.3 ± 0.4 mg gallic acid equivalent per gram dry weight), total flavonoid content (43.8 ± 0.2 mg quercetin equivalent per gram dry weight), and reducing power (41.9 ± 2.2 mg ascorbic acid equivalent per gram dry weight). The results indicated that jujube peel pulp is a more potential natural antioxidant than seeds.


1980 ◽  
Vol 30 (3) ◽  
pp. 862-873
Author(s):  
P Kiley ◽  
S C Holt

The lipopolysaccharide (LPS) from Actinobacillus actinomycetemcomitans strains Y4 and N27 was isolated by the phenol-water procedure. Morphologically, the molecule consisted of ribbon and branched filaments which comprised 3% of the cellular dry weight. Chemical analysis of the isolated and purified LPSs of both strains showed them to consist of carbohydrate, lipid, 2-keto-3-deoxyoctonate, heptose, hexosamine, and phosphate. The major fatty acids of the lipid A moiety were saturated C14 and beta-OH C14 compounds. Rhamnose, fucose, galactose, glucose, heptose, glucosamine, and galactosamine comprised the monosaccharide portion of the LPS. Biological activity studies revealed both LPS molecules to be active in the Schwartzman reaction and in in vitro 45Ca bone resorption, as well as in macrophage activation and lethality and in platelet aggregation.


Sign in / Sign up

Export Citation Format

Share Document