scholarly journals Electrospinning Processing Techniques for the Manufacturing of Composite Dielectric Elastomer Fibers

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6288
Author(s):  
Mirella Ramirez ◽  
Louis Vaught ◽  
Chiu Law ◽  
Jacob L. Meyer ◽  
Rani Elhajjar

Dielectric elastomers (DE) are novel composite architectures capable of large actuation strains and the ability to be formed into a variety of actuator configurations. However, the high voltage requirement of DE actuators limits their applications for a variety of applications. Fiber actuators composed of DE fibers are particularly attractive as they can be formed into artificial muscle architectures. The interest in manufacturing micro or nanoscale DE fibers is increasing due to the possible applications in tissue engineering, filtration, drug delivery, catalysis, protective textiles, and sensors. Drawing, self-assembly, template-direct synthesis, and electrospinning processing have been explored to manufacture these fibers. Electrospinning has been proposed because of its ability to produce sub-mm diameter size fibers. In this paper, we investigate the impact of electrospinning parameters on the production of composite dielectric elastomer fibers. In an electrospinning setup, an electrostatic field is applied to a viscous polymer solution at an electrode’s tip. The polymer composite with carbon black and carbon nanotubes is expelled and accelerated towards a collector. Factors that are considered in this study include polymer concentration, solution viscosity, flow rate, electric field intensity, and the distance to the collector.

Author(s):  
Singh K. ◽  
Pandit K. ◽  
Mishra N.

The matrix tablets of cinnarizine and nimodipine were prepared with varying ratio of Carbopol- 971P and co-excipients of varying hydrophilicity (i.e. dicalcium phosphate and spray dried lactose) by direct compression and wet granulation using alcoholic mucilage. The prepared tablets were evaluated for weight variation, hardness and friability. The influence of concentration of the matrix forming material and co-excipients on the release rate of the drug was studied. The release rate of Cinnarizine (more soluble drug) from tablets followed diffusion controlled mechanism whereas for nimodipine (less soluble drug), the drug release followed case-II or super case- II transport mechanism based on Korsmeyer- Peppas equation. The results indicated that the drug release from matrix tablets was increases with increase in hydrophilicity of drug and co-excipients. The release of drug also increased with thermal treatment and decreasing polymer concentration.


Domiati cheese is the most popular brand of cheese ripened in brine in the Middle East in terms of consumed quantities. This study was performed to investigate the impact of the microbiological quality of the used raw materials, the applied traditional processing techniques and ripening period on the quality and safety of the produced cheese. Three hundred random composite samples were collected from three factories at Fayoum Governorate, Egypt. Collected samples represent twenty-five each of: raw milk, table salt, calf rennet, microbial rennet, water, environmental air, whey, fresh cheese, ripened cheese & swabs from: worker hands; cheese molds and utensils; tanks. All samples were examined microbiologically for Standard Plate Count (SPC), coliforms count, Staphylococcus aureus (S. aureus) count, total yeast & mould count, presence of E. coli, Salmonellae and Listeria monocytogenes (L. monocytogenes). The mean value of SPC, coliforms, S. aureus and total yeast & mould counts ranged from (79×102 CFU/m3 for air to 13×108 CFU/g for fresh cheese), (7×102 MPN/ cm2 for tank swabs to 80×106 MPN/ml for raw milk), (9×102 CFU/g for salt to 69×106 CFU/g for fresh cheese) and (2×102 CFU/cm2 for hand swabs to 60×104 CFU/g for fresh cheese), respectively. Whereas, E. coli, Salmonella and L. monocytogenes failed to be detected in all examined samples. There were significant differences in all determined microbiological parameters (p ≤0.05) between fresh and ripened cheese which may be attributed to different adverse conditions such as water activity, pH, salt content and temperature carried out to improve the quality of the product.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1023
Author(s):  
Ji Young Yu ◽  
Piyanan Chuesiang ◽  
Gye Hwa Shin ◽  
Hyun Jin Park

Liposomes have been utilized as a drug delivery system to increase the bioavailability of drugs and to control the rate of drug release at the target site of action. However, the occurrence of self-aggregation, coalescence, flocculation and the precipitation of aqueous liposomes during formulation or storage can cause degradation of the vesicle structure, leading to the decomposition of liposomes. To increase the stability of liposomes, post-processing techniques have been applied as an additional process to liposomes after formulation to remove water and generate dry liposome particles with a higher stability and greater accessibility for drug administration in comparison with aqueous liposomes. This review covers the effect of these techniques including freeze drying, spray drying and spray freeze drying on the stability, physicochemical properties and drug encapsulation efficiency of dry liposomes. The parameters affecting the properties of liposomes during the drying process are also highlighted in this review. In addition, the impact of using a protective agent to overcome such limitations of each process is thoroughly discussed through various studies.


AERA Open ◽  
2021 ◽  
Vol 7 ◽  
pp. 233285842110286
Author(s):  
Kylie L. Anglin ◽  
Vivian C. Wong ◽  
Arielle Boguslav

Though there is widespread recognition of the importance of implementation research, evaluators often face intense logistical, budgetary, and methodological challenges in their efforts to assess intervention implementation in the field. This article proposes a set of natural language processing techniques called semantic similarity as an innovative and scalable method of measuring implementation constructs. Semantic similarity methods are an automated approach to quantifying the similarity between texts. By applying semantic similarity to transcripts of intervention sessions, researchers can use the method to determine whether an intervention was delivered with adherence to a structured protocol, and the extent to which an intervention was replicated with consistency across sessions, sites, and studies. This article provides an overview of semantic similarity methods, describes their application within the context of educational evaluations, and provides a proof of concept using an experimental study of the impact of a standardized teacher coaching intervention.


2021 ◽  
Vol 22 (6) ◽  
pp. 3098
Author(s):  
Aleksander Strugała ◽  
Jakub Jagielski ◽  
Karol Kamel ◽  
Grzegorz Nowaczyk ◽  
Marcin Radom ◽  
...  

Virus-like particles (VLPs), due to their nanoscale dimensions, presence of interior cavities, self-organization abilities and responsiveness to environmental changes, are of interest in the field of nanotechnology. Nevertheless, comprehensive knowledge of VLP self-assembly principles is incomplete. VLP formation is governed by two types of interactions: protein–cargo and protein–protein. These interactions can be modulated by the physicochemical properties of the surroundings. Here, we used brome mosaic virus (BMV) capsid protein produced in an E. coli expression system to study the impact of ionic strength, pH and encapsulated cargo on the assembly of VLPs and their features. We showed that empty VLP assembly strongly depends on pH whereas ionic strength of the buffer plays secondary but significant role. Comparison of VLPs containing tRNA and polystyrene sulfonic acid (PSS) revealed that the structured tRNA profoundly increases VLPs stability. We also designed and produced mutated BMV capsid proteins that formed VLPs showing altered diameters and stability compared to VLPs composed of unmodified proteins. We also observed that VLPs containing unstructured polyelectrolyte (PSS) adopt compact but not necessarily more stable structures. Thus, our methodology of VLP production allows for obtaining different VLP variants and their adjustment to the incorporated cargo.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 967
Author(s):  
Amirreza Mahbod ◽  
Gerald Schaefer ◽  
Christine Löw ◽  
Georg Dorffner ◽  
Rupert Ecker ◽  
...  

Nuclei instance segmentation can be considered as a key point in the computer-mediated analysis of histological fluorescence-stained (FS) images. Many computer-assisted approaches have been proposed for this task, and among them, supervised deep learning (DL) methods deliver the best performances. An important criterion that can affect the DL-based nuclei instance segmentation performance of FS images is the utilised image bit depth, but to our knowledge, no study has been conducted so far to investigate this impact. In this work, we released a fully annotated FS histological image dataset of nuclei at different image magnifications and from five different mouse organs. Moreover, by different pre-processing techniques and using one of the state-of-the-art DL-based methods, we investigated the impact of image bit depth (i.e., eight bits vs. sixteen bits) on the nuclei instance segmentation performance. The results obtained from our dataset and another publicly available dataset showed very competitive nuclei instance segmentation performances for the models trained with 8 bit and 16 bit images. This suggested that processing 8 bit images is sufficient for nuclei instance segmentation of FS images in most cases. The dataset including the raw image patches, as well as the corresponding segmentation masks is publicly available in the published GitHub repository.


2017 ◽  
Vol 812 ◽  
pp. 1076-1118 ◽  
Author(s):  
S. S. Srinivas ◽  
V. Kumaran

The modification of soft-wall turbulence in a microchannel due to small amounts of polymer dissolved in water is experimentally studied. The microchannels are of rectangular cross-section with height ${\sim}$160 $\unicode[STIX]{x03BC}\text{m}$, width ${\sim}$1.5 mm and length ${\sim}$3 cm, with three walls made of hard polydimethylsiloxane (PDMS) gel, and one wall made of soft PDMS gel with an elasticity modulus of ${\sim}$18 kPa. Solutions of polyacrylamide of molecular weight $5\times 10^{6}$ and mass fraction up to 50 ppm, and of molecular weight $4\times 10^{4}$ and mass fraction up to 1500 ppm, are used in the experiments. In all cases, the solutions are in the dilute limit below the critical overlap concentration, and the solution viscosity does not exceed that of water by more than 10 %. Two distinct types of flow modifications are observed below and above a threshold mass fraction for the polymer, $w_{t}$, which is ${\sim}$1 ppm and 500 ppm for the solutions of polyacrylamide with molecular weights $5\times 10^{6}$ and $4\times 10^{4}$, respectively. At or below $w_{t}$, there is no change in the transition Reynolds number, but there is significant turbulence attenuation, by up to a factor of 2 in the root-mean-square velocities and a factor of 4 in the Reynolds stress. When the polymer concentration increases beyond $w_{t}$, there is a decrease in the transition Reynolds number and in the intensity of the turbulent fluctuations. The lowest transition Reynolds number is ${\sim}$35 for the solution of polyacrylamide with molecular weight $5\times 10^{6}$ and mass fraction 50 ppm (in contrast to 260–290 for pure water). The fluctuating velocities in the streamwise and cross-stream directions are lower by a factor of 5, and the Reynolds stress is lower by a factor of 10, in comparison to pure water.


Author(s):  
Thomas Shepard ◽  
Eric Ruud ◽  
Henry Kinane ◽  
Deify Law ◽  
Kohl Ordahl

Controlling bubble diameter and bubble size distribution is important for a variety of applications and active fields of research. In this study the formation of bubbles from porous plates in a liquid cross-flow is examined experimentally. By injecting air through porous plates of various media grades (0.2 to 100) into liquid flows in rectangular channels of varying aspect ratio (1–10) and gas/liquid flow rates the impact of the various factors is presented. Image processing techniques were used to measure bubble diameters and capture their formation from the porous plates. Mean bubble diameters ranged from 0.06–1.21 mm. The present work expands upon the work of [1] and further identifies the relative importance of wall shear stress, air injector pore size and gas to liquid mass flow ratio on bubble size and size distribution.


2018 ◽  
Author(s):  
Ailís O’Carroll ◽  
Brieuc Chauvin ◽  
James Brown ◽  
Ava Meagher ◽  
Joanne Coyle ◽  
...  

AbstractA novel concept has emerged whereby the higher-order self-assembly of proteins provides a simple and robust mechanism for signal amplification. This appears to be a universal signalling mechanism within the innate immune system, where the recognition of pathogens or danger-associated molecular patterns need to trigger a strong, binary response within cells. Previously, multiple structural studies have been limited to single domains, expressed and assembled at high protein concentrations. We therefore set out to develop new in vitro strategies to characterise the behaviour of full-length proteins at physiological levels. In this study we focus on the adaptor protein MyD88, which contains two domains with different self-assembly properties: a TIR domain that can polymerise similarly to the TIR domain of Mal, and a Death Domain that has been shown to oligomerise with helical symmetry in the Myddosome complex. To visualize the behaviour of full-length MyD88 without purification steps, we use single-molecule fluorescence coupled to eukaryotic cell-free protein expression. These experiments demonstrate that at low protein concentration, only full-length MyD88 forms prion-like polymers. We also demonstrate that the metastability of MyD88 polymerisation creates the perfect binary response required in innate signalling: the system is silenced at normal concentrations but upstream signalling creates a “seed” that triggers polymerisation and amplification of the response. These findings pushed us to re-interpret the role of polymerisation in MyD88-related diseases and we studied the impact of disease-associated point mutations L93P, R196C and L252P/L265P at the molecular level. We discovered that all mutations completely block the ability of MyD88 to polymerise. We also confirm that L252P, a gain-of-function mutation, allows the MyD88 mutant to form extremely stable oligomers, even when expressed at low nanomolar concentrations. Thus, our results are consistent with and greatly add to the findings on the Myddosomes digital ‘all-or-none’ responses and the behaviour of the oncogenic mutation of MyD88.


Sign in / Sign up

Export Citation Format

Share Document