scholarly journals Experimental Study on the Axial Compression Performance of an Underwater Concrete Pier Strengthened by Self-Stressed Anti-Washout Concrete and Segments

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6567
Author(s):  
Shaofeng Wu ◽  
Yijun Ge ◽  
Shaofei Jiang ◽  
Sheng Shen ◽  
Heng Zhang

Compared with the conventional drainage strengthening techniques, the precast concrete segment assembly strengthening method (PCSAM) is regarded as a fast, more economical, and traffic-friendly underwater strengthening method for damaged bridge piers and piles, as the drainage procedure can be omitted. However, this method still has some disadvantages, such as strength loss of the filling material, debonding of the interface due to shrinkage of the filling material, poor connection effects, and poor durability of the segment sleeves. To solve these problems, the PCSAM is improved in this study by using self-stressed anti-washout concrete (SSAWC) as the filling material and by developing a lining concrete segment sleeve (LCSS) by referring to the design theory for shield lining segments. Six specimens are designed and prepared with consideration of the influential factors, such as the self-stress, thickness of the filled concrete, and concrete strength of the LCSS, then the monotonic axial compression test is carried out to investigate the improvements in the axial compression properties of the specimens. Accordingly, extended parametric analyses are performed based on the established numerical models. Finally, the calculation formula for the bearing capacity is proposed based on the analysis results. The results indicate that the SSAWC can provide initial confining compressive stress in the core region of the piers, in addition to increasing the bearing capacity and ductility of the specimens. The improved LCSS segment connection is more reliable and increases the strengthening efficiency. The influence of self-stress on the bearing capacity of the specimens is cubic and the influence of the filled concrete strength on the bearing capacity of the specimens is nonlinear. The calculation formula for predicting the bearing capacity of axially compressed columns possesses good applicability and can be used as a reference for practical engineering.

2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Hongyao Liu ◽  
Min Lei ◽  
Bowang Chen

We propose a new method to strengthen structural masonry. To study on the axial compression behavior of masonry columns’ strengthening with a bamboo scrimber bar mesh mortar layer, axial compression tests of twelve masonry columns have been completed: nine strengthened columns and three unstrengthened columns. The failure process, bearing capacity, and failure mode are carried out. The strengthening method of bamboo scrimber bar mesh mortar layer permits the upgrade of the columns’ bearing capacity. The effects of bamboo bar ratio and mortar strengthening ratio on bearing capacity of the reinforced columns are compared. We propose the method for calculating the axial bearing capacity of such a reinforced column. The calculation results agree well with the experimental results, and the research results are available for engineering application.


2012 ◽  
Vol 166-169 ◽  
pp. 881-884
Author(s):  
Bao Rong Huo ◽  
Xiang Dong Zhang

12 RC columns were made, including nine RC columns wrapped with BFRP, three RC columns without any reinforcement, to conduct the comparative study of axial compression. The result shows that the bearing capacity of the RC columns reinforced with the fibers increases obviously.The displacement ductility factor increases, but its increase rate becomes slow with increasing layers of fiber cloth, so the most economical layer number is 3. Based on the confinement mechanism of FRP cloth and the calculation formula of the bearing capacity for common RC column, the formula of the bearing capacity for reinforced RC column with BFRP cloth is proposed. The result of calculation basically tallies with the number in experiment.


2008 ◽  
Vol 400-402 ◽  
pp. 677-683 ◽  
Author(s):  
Yu Yin Wang ◽  
Yuan Long Yang ◽  
Su Mei Zhang ◽  
Jie Peng Liu

Concrete-filled special-shaped (L-shaped, T-shaped, and cross-shaped, and etc.) steel tube column is a type of member in which concrete is poured into special-shaped steel tube so that steel and concrete support loads together. It improves the seismic behaviors of reinforced concrete special-shaped columns due to the better confining effects provided by the steel tube. A test research on the seismic behaviors of one concrete-filled T-shaped steel tube column with pseudo static method is presented and the load-displacement curve and skeleton curve are provided. Series of steel bar stiffeners were welded onto the steel tube in order to postpone the buckling of steel tube and to enhance confining effects. A numerical analysis program was developed using a fiber-based method. The constitutive model of concrete employed the modified Mander model, and that of steel employed a bi-linear model considering the Bausinger effect. The numerical analysis program was verified by the test results and parametric analysis was carried out, in which the influences of the ratio of axial compression stress to strength, steel tube thickness and concrete strength were mainly discussed. The following conclusions are obtained: with the increase of the ratio of axial compression stress to strength, the bearing capacity of member increases and the energy dissipation capacity improve, while the ductility deteriorates. With the increase of steel tube thickness, the initial rigidity, bearing capacity, ductility and energy dissipation capacity improves simultaneously. With the increase of concrete strength, the bearing capacity increases, the energy dissipation capacity improves, while the ductility deteriorates.


2018 ◽  
Vol 2018 ◽  
pp. 1-18
Author(s):  
Wenying Zhang ◽  
Lianping Yang ◽  
Shaole Yu ◽  
Xinxi Chen ◽  
Xuewei Zhang

This paper presents the results of a numerical and analytical study to investigate the effect of adhesive interface on the ultimate capacity of a new composite sandwich shear wall: double-superposed shear wall. The effect of adhesive interface on the ultimate capacity of two different wall configurations under different axial compression ratios was studied. The results indicate that, for the two different wall configurations, the bond strength of adhesive interface has a negligible effect on ultimate bearing capacity. As a result of the different intensity grades between cast-in-situ concrete wythe and precast concrete wythe, the double-superposed shear wall with precast boundary elements (wall configuration W3) yields a higher ultimate bearing capacity than that with cast-in-place boundary elements (wall configuration W2), when the axial compression ratio exceeds 0.2, which is contrary to the results under 0.1 axial compression ratio. A new calculation method for ultimate bearing capacity is proposed to take into account the different intensity grades, and the calculation results show a very good agreement with the numerical simulation results.


2013 ◽  
Vol 457-458 ◽  
pp. 1517-1522
Author(s):  
Wen Li ◽  
Hai Nan Yan ◽  
Peng Wang ◽  
Xiao Gang Chen ◽  
Li Na Yao

According to the basic idea of the finite element method, using the finite element software ANSYS to establish the finite element model of the reinforcement FRP pipe concrete under axial compression, introducing the unit selection in the process of building model ,based on the principle of meshing boundary conditions and constitutive relations selected; The significant degree of the model verified by compare with the test results. Analyzed by finite element reinforcement ratio, concrete strength and other factors on the mechanical properties of concrete under axial compression reinforcement FRP pipe, the analysis of the results shows: The increase of reinforcement ratio to improve the point load of the specimens and improve the composite column ultimate bearing capacity, but the reinforcement ratio increase will reduce the binding effect of the FRP pipe; The whole component be improved the strength of concrete can improve the ultimate bearing capacity, but it reduces the mechanical properties of the specimens.


2014 ◽  
Vol 501-504 ◽  
pp. 685-689
Author(s):  
Liang Li Xiao ◽  
Xiao Yu ◽  
Jian Wei Han

According to the limit values of axial compression ratio of steel reinforced concrete given by technical specification for steel reinforced concrete composite structure (JGJ138-2001), the axial force of steel reinforced concrete sandwich nodes calculated by MIDAS and the axial bearing capacity calculated by limit values of axial compression ratio are compared with an actual project. The results show that steel concrete columns with designed strength of C60, the strength more than of column concrete strength higher than C50 is the least requirement as to meet the axial compression ratio. The result provides a theoretical basis for the future of safety work and the sandwich joint construction.


2014 ◽  
Vol 651-653 ◽  
pp. 1192-1196
Author(s):  
Ji She ◽  
Yun Zou ◽  
Yang Liu ◽  
Zheng Hao Li ◽  
Kai Wen Li

Nonlinear numerical analysis for prefabricated shell wall structure is processed on this paper with the finite element software of ABAQUS. Nonlinear numerical analysis for prefabricated shell wall with vertical joint is processed firstly and numerical analysis results are found to be reasonable when compared with experimental results. Then the influence of factors such as shear strength of joint and axial compression ratio are conparatively analyzed. The results show that shear strength of joint has a greater influence on the bearing capacity and hysteretic performance of the structure and axial compression ratio also has a greater influence on the bearing capacity but less on the hysteretic performance.


2021 ◽  
pp. 136943322110159
Author(s):  
Bo Wu ◽  
Zhikai Wei

Recycled lump concrete (RLC) made with demolished concrete lumps (DCLs) and fresh concrete (FC) provides a solution for effective waste concrete recycling. To promote the development of precast RLC structures, this study tested a new type of connection for precast concrete columns: connecting the upper and the lower halves of columns with bent longitudinal reinforcements and structural adhesive. In this work the behavior of precast RLC columns with the new connection was studied under axial compression. The axial compressive strength of nine two-part columns was tested. The effects of the degree of bending in the longitudinal reinforcement, the replacement ratio of DCLs and the stirrup spacing were investigated. Tests showed that: (1) the failure mode of precast concrete columns is different from that of cast-in-place columns; (2) when the strength of the waste concrete is close to that of the fresh material, there is no significant difference in the axial compression performance of either precast or cast-in-place columns; (3) the bent longitudinal reinforcement causes the axial load bearing capacity of precast concrete columns to be 4.2%–12.3% lower than that of a similar cast-in-place column; (4) reducing the stirrup spacing has little effect on a precast column’s axial load bearing capacity and ductility; (5) when using Chinese and American codes to predict the axial load bearing capacity of the column, the predicted value should be multiplied by a reduction factor.


2020 ◽  
Vol 9 (1) ◽  
pp. 2219-2225

The technology of manufacturing reinforced concrete structures of long-line systems of formwork-free shaping is widely used lately in construction industry in many countries. Using this technology, industrial construction can be carried out in accordance with the requirements of modern regulatory documents that allow projects to be developed individually, and production can be reoriented in a very short time in accordance with emerging needs. This means that on the same production line it is possible to produce various structural elements of buildings and structures. Also, this technology allows the production of structures according to a wide range of products that meet operational requirements, and increases the possibility of their use in design of buildings and structures with various architectural, planning and structural decisions. Prestressed hollow-core slabs of formwork-free shaping reinforced with high-strength wire reinforcement are widely used due to the simplicity of construction and their relatively low cost, as well as their high bearing capacity, large spans and better quality. The problem of their introduction into construction industry of Uzbekistan is that the issues of designing, manufacturing and using them in construction have not been studied. Besides, the production technology of such slabs is mostly associated with the construction in non-seismic areas, and the country does not have an appropriate regulatory framework for the possibility of slab designing and production. The aim of the study is to assess the strength and serviceability of hollow-core slabs of formwork-free shaping, designed on the basis of the proposed structural solution of the slab cross section and intended for construction in seismic areas. Therefor the issues of optimizing the main reinforcement consumption (prestressed high-strength wire reinforcement) at class B30 concrete strength without using the non-stressed reinforcement (reinforcing products) for the product range under consideration were addressed. Theoretical and constructive solutions of the slabs were developed in accordance with the standard requirements of Uzbekistan KMK 2.03.01-96 “Concrete and reinforced concrete structures”, KMK 2.01.03 “Construction in seismic areas” and considering the Euronorm EN 1168-2005 requirements “Precast concrete. Hollow-core slabs”.


2019 ◽  
Vol 11 (1) ◽  
pp. 23-40
Author(s):  
Zejun Zheng ◽  
Jun Yu ◽  
Fangfang Wei ◽  
Jun Wu

Currently, terrorism attack is one of the main concerns in public safety, although the probability of such attack is fairly low. From the perspective of multi-hazard mitigation, it is expected that the structural members that are used to resist earthquakes or winds in buildings should also reduce the vulnerability to blast. Concrete filled double-steel-plate composite walls are one of the novel structural members which are used as shear walls, in which concrete is filled between two steel plates and connected to them through shear studs. In this article, finite-element-based analyses were carried out to investigate the dynamic behaviour of concrete filled double-steel-plate composite walls subjected to blast loading. A three-dimensional numerical model was developed and validated based on previously published experimental results. Then, the numerical models were employed to investigate the effects of axial compression ratio, concrete strength, wall thickness and shear connector spacing on the blast performance of concrete filled double-steel-plate composite walls under different blast intensities. The results show that axial compression has both positive and negative effects on the blast performance of concrete filled double-steel-plate composite walls. The positive effect prevails due to increased effective flexural stiffness when plastic deformation under zero axial compression and the same blast load is marginal, whereas the negative effect is more dominant due to P-delta effect when evident plastic deformation occurs under zero axial compression and the same blast load.


Sign in / Sign up

Export Citation Format

Share Document