scholarly journals Electrocatalytic Degradation of Levofloxacin, a Typical Antibiotic in Hospital Wastewater

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6814
Author(s):  
Hongxia Lv ◽  
Peiwei Han ◽  
Xiaogang Li ◽  
Zhao Mu ◽  
Yuan Zuo ◽  
...  

Presently, in the context of the novel coronavirus pneumonia epidemic, several antibiotics are overused in hospitals, causing heavy pressure on the hospital’s wastewater treatment process. Therefore, developing stable, safe, and efficient hospital wastewater treatment equipment is crucial. Herein, a bench-scale electrooxidation equipment for hospital wastewater was used to evaluate the removal effect of the main antibiotic levofloxacin (LVX) in hospital wastewater using response surface methodology (RSM). During the degradation process, the influence of the following five factors on total organic carbon (TOC) removal was discussed and the best reaction condition was obtained: current density, initial pH, flow rate, chloride ion concentration, and reaction time of 39.6 A/m2, 6.5, 50 mL/min, 4‰, and 120 min, respectively. The TOC removal could reach 41% after a reaction time of 120 min, which was consistent with the result predicted by the response surface (40.48%). Moreover, the morphology and properties of the electrode were analyzed. The degradation pathway of LVX was analyzed using high-performance liquid chromatography–mass spectrometry (LC–MS). Subsequently, the bench-scale electrooxidation equipment was changed into onboard-scale electrooxidation equipment, and the onboard-scale equipment was promoted to several hospitals in Dalian.

2017 ◽  
Vol 76 (9) ◽  
pp. 2367-2379 ◽  
Author(s):  
Ninad Oke ◽  
Swati Singh ◽  
Anurag Garg

Abstract The bleaching effluent discharged from a pulp and paper mill contains chlorinated organic compounds which are toxic to living matter. Physicochemical treatments such as coagulation and different advanced oxidation processes (AOPs) were employed for combined bleaching effluent generated from the first two stages (i.e. chlorination and alkali extraction) (pH = 3.5, chemical oxygen demand (COD) = 1,920 mg/L, and total organic carbon (TOC) = 663 mg/L). At optimum conditions (pH = 7.5, polyaluminium chloride (PAC) dose = 3.84 g/L and slow mixing time = 25 min), ∼68% removal in UV254 and ∼23% TOC removal was obtained during coagulation. Among various AOPs, UV/Fe2+/TiO2/H2O2 system showed the highest TOC and COD removals (∼78%) after 2 h duration (Fe2+:H2O2 molar ratio = 1:100). After the AOP process, chloride ion concentration and biodegradability of the treated wastewater was increased to 2,762 mg/L and 0.46 from an initial value of 2,131 mg/L and 0.29, respectively. The wastewater and sludge analysis showed oxidation and adsorption as the major mechanisms for organics removal. Upon reuse of the regenerated catalysts, TOC removal was reduced significantly. It was found that three times more sludge per unit TOC removal was generated after coagulation in comparison to that produced after UV/Fe2+/TiO2/H2O2 treatment.


2018 ◽  
Vol 3 (1) ◽  
pp. 13-21
Author(s):  
Jean Vigneron ◽  
Elise D’Huart ◽  
Béatrice Demoré

Abstract Background Bendamustine is used for the treatment of non-Hodgkin lymphoma, chronic lymphocytic leukaemia and myeloma. The stability of bendamustine is highly dependent on temperature and chloride-ion concentration. Limited stability data are available. The objective of this work was to study the stability of the bendamustine reconstituted solution at 2.5 mg/mL and the diluted solution in normal saline and 1.5 % sodium chloride to evaluate a potential increase in stability. Methods A stability indicating High Performance Liquid Chromatography method with Diode Array Detection was used. A first study was carried out in glass vials and then in polyolefin containers at 0.25 and 0.60 mg/mL. Solutions were stored at room temperature and at 2–8 °C for 7 days. Results Stability was defined as a concentration above 95 % of the initial concentration [10]. The reconstituted solution at 2.5 mg/mL was stable for only 2 hours at room temperature and 8 hours at 2–8 °C. The stability of diluted solutions was in accordance with the manufacturer’s recommendations of 3.5 hours at room temperature and 48 hours at 2–8 °C. The addition of sodium chloride doesn’t increase the stability for preparation in infusion in daily practice. Conclusions The information brought by this study is an 8-hour stability of the reconstituted solution at 2–8 °C.


2014 ◽  
Vol 584-586 ◽  
pp. 1581-1585
Author(s):  
Peng Gao ◽  
Hong Fa Yu

4 kinds of mix proportion High performance concrete (HPC) was manufactured, whose material was produced from Inner Mongolia areas. During the brine corroded HPC experiment, the effects on surface chloride ion concentration of HPC, which was produced by different curing age and soak time, were studied. And the resistance to corrosion of HPC was analyzed. The curing period of HPC was adopted as 28d, 56d, and 90d. The soak period of brine-corroded HPC was 1 year. The changes of HPC surface chloride ion concentration were obtained in the experiment. Results show that, in the brine-corroded environment, the surface chloride ion concentration of HPC decreases obviously by the extension of HPC curing period. Furthermore, the surface chloride ion concentration of 4 HPC samples increases by the extension of HPC soak period, whose late growth is becoming gently. In the meanwhile, the regression relationship between HPC surface chloride ion concentration and different curing period, soak period is achieved.


2020 ◽  
Vol 44 (5) ◽  
pp. 1352-1365
Author(s):  
Ayşe BOZAN ◽  
Rahime SONGÜR ◽  
Ülkü MEHMETOĞLU

As the enantiomers of 1-phenylethanol are valuable intermediates in several industries, the lipase catalyzed kinetic resolution of (R,S) -1-phenylethanol is a relevant research topic. In this study, the goal was to determine the optimum reaction parameters to produce enantiomerically pure 1-phenylethanol by lipase (Novozyme 435) catalyzed kinetic resolution using response surface methodology (RSM). Reactions were performed with 40–400 mM (R,S)-1-phenylethanol, 120–1200 mM vinyl acetate and 2–22 mg/ mL biocatalyst concentrations (BCL), at 20–60 °C and with a stirring rate of 50–400 rpm for 5–120 min. The samples were analyzed using high performance liquid chromatography (HPLC) with a Chiralcel OB column. Optimum reaction parameters to reach 100% enantiomeric excess for the substrate (ees) were determined as follows: substrate concentration (Cs): 240 mM, BCL: 11 mg/mL, at 42 °C with a reaction time of 75 min. Model validation was performed using these conditions and ees was calculated as 100%, which indicates the predicted model was efficient and accurate. When compared to the literature, it was observed that the reaction time decreased significantly. This is an important result considering the industrial scale perspective.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2284
Author(s):  
Anita Maslahati Roudi ◽  
Sultan Salem ◽  
Amin Maslahati ◽  
Muhammad Imran

As an advanced oxidative processes, the Fenton process is receiving popularity as a wastewater treatment technique that can be used for hazardous landfill leachate. The treatment is simple, yet involves complex interactions between the affecting parameters including reaction time, H2O2/Fe2+ ratio, pH, and iron (II) ion concentration. Hence, the purpose of this present study was to analyze the factors affecting landfill leachate treatment as well as their interaction by means of response surface methodology (RSM) with central composite design. The independent variables were reaction time, H2O2/Fe2+ ratio, iron (II) ion concentration, and pH, and the dependent variable (response) was color-removal percentage. The optimum treatment conditions for pH, H2O2/Fe2+ ratio, Fe2+ concentration, and reaction time were 8.36, 3.32, 964.95 mg/L, and 50.15 min, respectively. The model predicted 100% color removal in optimum conditions, which was close to that obtained from the experiment (97.68%). In conclusion, the optimized Fenton process using the RSM approach promotes efficient landfill leachate treatment that is even higher than that already reported.


2010 ◽  
Vol 61 (12) ◽  
pp. 3208-3215 ◽  
Author(s):  
H. Fr. Schröder ◽  
H. J. José ◽  
W. Gebhardt ◽  
R. F. P. M. Moreira ◽  
J. Pinnekamp

Perfluorinated surfactants (PFS) have become compounds of high concern during the last decade. While “conventional surfactants” are degraded to a great extent in the biological wastewater treatment process, partly or perfluorinated surfactants are not only stable against biodegradation but also against oxidizing agents, they even resist OH-radical attacks. Our objectives were to eliminate the fluorinated surfactants perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) by adsorption, separation or degradation with a balance of precursor compounds and follow-up of degradation products. Therefore, municipal wastewater was spiked with these fluorinated surfactants before membrane bioreactor (MBR) treatment—applying microfiltration membranes—was performed and before permeates were treated using ozone (O3) or different advanced oxidation treatment (AOP) techniques. O3 or hydrogen peroxide (H2O2), both in combination with UV radiation or in combination with catalysts, was applied. Removal by adsorption or membrane separation as well as degradation were monitored by substance specific determination and identification. High resolution mass spectrometry after high performance liquid chromatography (HPLC/HRMS and -MSn) was used for analysis. Contact to Teflon® and/or glass during all analytical procedures was avoided.


2019 ◽  
Vol 805 ◽  
pp. 161-169
Author(s):  
Hao Yu Chen

In this paper, ordinary Portland cement concrete (OPC) and high performance concrete (HPC) were used in the marine environment exposure experiments, Using the second Fick’s law, five parameter of life prediction model-binding ability, diffusion coefficient of free C1- time dependent parameters, chloride ion concentration of surface and degradation effect coefficients are confirmed. The service life of OPC and HPC in ocean conditions is calculated and compared using mathematic software in atmosphere region, underwater region and tidal zone.


2021 ◽  
Vol 75 ◽  
Author(s):  
Maryam Golchin ◽  
Mohammadreza Khani ◽  
Mohsen Sadani ◽  
Mehdi Sadeghi ◽  
Mahsa Jahangiri-rad

ABSTRACT Release of antibiotics to the environment as a result of wastewater effluent discharge is a cause for concern worldwide, as they pose a potential threat to human health and the earth ecosystem. Penicillin and amoxicillin are widely used antibiotics. Despite their rapid hydrolysis in aqueous matrices, their presence in the environment is widely investigated. The current study reported and analysed the current state of four hospital wastewater treatment plants (WWTPs) in Gonbad Kavous, Iran, during 2019, from the perspective of amoxicillin and penicillin G removals. WWTPs were sampled at various stages of the treatment process to determine at which stage the antibiotics are being removed. Concentrations of amoxicillin and penicillin G in raw wastewater, analysed by HPLC, varied from 0.35 to 1.02 and 0.02-0.31 /AgL-1, respectively. These values reduced in the final effluent, corresponding to overall efficiency in removing the studied antibiotics of 20-60.5%. Anaerobic processes (i.e. septic tank) slightly outperformed aerobic biological processes for both antibiotics' removal, and penicillin G was removed more efficiently than amoxicillin. Effects of wastewater physicochemical properties, including chemical oxygen demand (COD), biochemical oxygen demand (BOD), and total suspended solids (TSS) on antibiotics removal, were also studied. Whereas statistically significant correlations were noticed between COD, amoxicillin and penicillin G removals, their decline showed no correlation with TSS removal. Our study shows that despite the deployment of treatment plants, a considerable amount of antibiotics is released into receiving water bodies, resulting in significant amounts of these pharmaceuticals entering the environment. There is abundant room for further progress in the detection and quantification of pharmaceuticals and other emerging contaminants in hospital wastewaters and their metabolites and biodegradation products. Keywords: amoxicillin; penicillin G; high-performance liquid chromatography; hospital wastewater treatment plants; removal.


Antibiotics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1070
Author(s):  
Tomáš Mackuľak ◽  
Klára Cverenkárová ◽  
Andrea Vojs Staňová ◽  
Miroslav Fehér ◽  
Michal Tamáš ◽  
...  

Municipal wastewaters can generally provide real-time information on drug consumption, the incidence of specific diseases, or establish exposure to certain agents and determine some lifestyle consequences. From this point of view, wastewater-based epidemiology represents a modern diagnostic tool for describing the health status of a certain part of the population in a specific region. Hospital wastewater is a complex mixture of pharmaceuticals, illegal drugs, and their metabolites as well as different susceptible and antibiotic-resistant microorganisms, including viruses. Many studies pointed out that wastewater from healthcare facilities (including hospital wastewater), significantly contributes to higher loads of micropollutants, including bacteria and viruses, in municipal wastewater. In addition, such a mixture can increase the selective pressure on bacteria, thus contributing to the development and dissemination of antimicrobial resistance. Because many pharmaceuticals, drugs, and microorganisms can pass through wastewater treatment plants without any significant change in their structure and toxicity and enter surface waters, treatment technologies need to be improved. This short review summarizes the recent knowledge from studies on micropollutants, pathogens, antibiotic-resistant bacteria, and viruses (including SARS-CoV-2) in wastewater from healthcare facilities. It also proposes several possibilities for improving the wastewater treatment process in terms of efficiency as well as economy.


Sign in / Sign up

Export Citation Format

Share Document