scholarly journals Wear Behavior of a Heat-Treatable Al-3.5Cu-1.5 Mg-1Si Alloy Manufactured by Selective Laser Melting

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7048
Author(s):  
Pei Wang ◽  
Yang Lei ◽  
Jun-Fang Qi ◽  
Si-Jie Yu ◽  
Rossitza Setchi ◽  
...  

In this study, the wear behavior of a heat-treatable Al-7Si-0.5Mg-0.5Cu alloy fabricated by selective laser melting was investigated systematically. Compared with the commercial homogenized AA2024 alloy, the fine secondary phase of the SLM Al-Cu-Mg-Si alloy leads to a low specific wear rate (1.8 ± 0.11 × 10−4 mm3(Nm)−1) and a low average coefficient of friction (0.40 ± 0.01). After the T6 heat treatment, the SLM Al-Cu-Mg-Si alloy exhibits a lower specific wear rate (1.48 ± 0.02 × 10−4 mm3(Nm)−1), but a similar average coefficient of friction (0.34 ± 0.01) as the heat-treated AA2024 alloy. Altogether, the SLM Al-3.5Cu-1.5 Mg-1Si alloy is suitable for the achievement of not only superior mechanical performance, but also improved tribological properties.

2017 ◽  
Vol 25 (3) ◽  
pp. 193-198 ◽  
Author(s):  
A. Madhanagopal ◽  
S. Gopalakannan

This study determines the friction and the wear properties of the unidirectional glass epoxy composite with Gr, SiC TiO2 powder by using pin on disk apparatus. This tribological data is obtained in dry sliding condition for a constant sliding time of 30 minutes. Test specimens are prepared using hand lay-up process and by varying the different (2, 5, 7) percentage each of graphite and SiC, TiO2 particles addition for the combination of fiber and matrix. The tests are performed by varying the operating parameters of contact pressure (p) and velocity (v). The composites (2% 5%, and 7%) are worn by dry sliding at the steel counter face under ambient conditions. The coefficient of friction reaches maximum of 0.78 at 2 kg load, 2 m/s velocity with testing time duration of 24 min. whereas 5%, 7% sample shows the coefficient of friction 0.28, 0.25 respectively. The specific wear rate value drops to 0.79 (mm3/N-m×10−6) at 2 kg load at 2 m/s velocity for the 5% specimen. The maximum reduction in the specific wear rate at 3 kg load, 1m/s velocity is 32.7 percentages, 5.63 percentages for the 5,7 percentage specimen compared to 2% specimen for the graphite and SiC, TiO2 particle filled composite specimen respectively. The SEM images are also taken to support the results.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Ashish Kumar Mishra ◽  
Ram Krishna Upadhyay ◽  
Arvind Kumar

Abstract Additive manufacturing (AM) has witnessed substantial growth in recent years due to its excellent manufacturing capabilities and innovative production methodologies. However, the mechanical suitability aspect in terms of material wear has not received much attention yet and needs rigorous assessment. This study investigates the wear anisotropy in an AlSi10Mg alloy sample fabricated by selective laser melting (SLM) technique. Different scanning strategies encompassing the island and the continuous scanning patterns were used in sample manufacturing. The effects of the scanning vector orientation, design pattern, and the island pattern size on the mechanical wear and wear anisotropy have been analyzed in detail. The study also focused upon a comparative investigation of the wear properties at the top and the side surfaces to understand the wear anisotropy in different directions. The samples are fabricated both by the fresh and the recycled powder and the role of powder state is described. The ball-on-disk test is performed to simulate the similar contact applications for marine/automotive components such as bearings. Bearing steel balls are used as a standard sliding counterpart material to investigate the wear properties. The wear microstructure is analyzed by scanning electron microscopy. Overall, the island strategy with 2 mm hatch style and 45 deg scan rotation have achieved better wear resistance and friction coefficient compared with the continuous hatch style. The wear behavior is found to be anisotropic. The Raman spectra validate the presence of silicon and carbon particles on the wear track, which have a significant effect on the tribological properties. The type of particles present in the sliding zone characterizes different wear stages. Wear mechanism is described by considering four parameters, namely, scan pattern, scan vector rotation, type of powder, and the wear measurement direction. Results show that the surface wear rate of samples made by the fresh powder is lower than the recycled powder. However, samples of the recycled powder have friction modifier characteristics. The best wear rate and friction coefficient values are obtained with the island strategy (2 mm hatch, 45 deg scan rotation) in the side plane and are 3.76 × 10−6 mm3/N m, 0.0781, respectively.


2007 ◽  
Vol 561-565 ◽  
pp. 773-776
Author(s):  
Toshio Tanimoto

The wear behavior of CFRP laminates with nano-particles dispersed surfaces of Al2O3 or carbon has been investigated and compared with that of conventional CFRP which is without particles dispersed surfaces. As a result of comparison, it is shown that the CFRP laminate with Al2O3 nano-particles dispersed surfaces inherently had low coefficient of friction and high sliding wear resistance. The measured value of specific wear rate was 3.5x10-7mm3/Nm, independently of sliding time. The wear behavior of CFRP laminates with carbon nano-particles dispersed surfaces has been more effectively improved. The measured specific wear rate of this material was in the range of 10- 7mm3/Nm in spite of comparatively small amount of nano-particles dispersion, which is relatively good as tribomaterial. For the successful application of this method, it is essential to explore the optimum amount of Al2O3 or carbon nano-particles to be dispersed onto prepreg surfaces. The deflocculation of the agglomerated particles and their homogeneous dispersion and good impregnation are the key points in this technology.


2019 ◽  
Vol 813 ◽  
pp. 171-177 ◽  
Author(s):  
Giacomo Maculotti ◽  
Gianfranco Genta ◽  
Massimo Lorusso ◽  
Maurizio Galetto

Selective Laser Melting (SLM) is one of the leader metal Additive Manufacturing (AM) processes thanks to its capability of coupling freeform design and environmental and economical sustainability to high mechanical properties. AlSi10Mg is a light weight Al-alloy with interesting processing properties and enhanced strength thanks to the presence of Mg, which, hence, finds application in several industrial fields. Furthermore, SLM allows overcoming those design constraints set by casting and melt spinning; however, SLM AlSi10Mg components require to be heat treated, both to strengthen the material and to engineer the microstructure. In this work, in order to assess the effectiveness of heat treatments on AlSi10Mg by SLM, an ad hoc analysis procedure based on statistical tools is applied in combination with indentation characterisation tests. In particular, to achieve full scale characterisation, traditional Brinell hardness and Instrumented Indentation Test (IIT) in macro and nano-range are considered. In particular, IIT is applied both at the lower end of macro range to provide consistency and statistically investigate relationship with Brinell scale and in the nano-range, enabling local, i.e. grain, and surface properties to be characterised.


2021 ◽  
Vol 144 ◽  
pp. 107423
Author(s):  
Qing-song Song ◽  
Ying Zhang ◽  
Yun-feng Wei ◽  
Xin-yi Zhou ◽  
Yi-fu Shen ◽  
...  

2016 ◽  
Vol 99 ◽  
pp. 120-126 ◽  
Author(s):  
Nan Kang ◽  
Pierre Coddet ◽  
Chaoyue Chen ◽  
Yan Wang ◽  
Hanlin Liao ◽  
...  

Author(s):  
Weipeng Duan ◽  
Meiping Wu ◽  
Jitai Han

TC4, which is one of the most widely used titanium alloy, is frequently used in biomedical field due to its biocompatible. In this work, selective laser melting (SLM) was used to manufacture TC4 parts and the printed parts were heat-treated using laser rescanning technology. The experimental results showed that laser rescanning had a high impact on the quality of SLMed part, and a different performance on wear resistance can be found on the basis. It can be seen that the volume porosity of the sample was 7.6 ± 0.5% without using any further processing technology. The volume porosity of the sample processed using laser rescanning strategy was decreased and the square-framed rescanning strategy had a relative optimal volume porosity (1.5 ± 0.3%) in all these five samples. With the further decreasing of volume porosity, the wear resistance decreased at the same time. As its excellent bio-tribological properties, the square-framed rescanning may be a potential suitable strategy to forming TC4 which used in human body.


2016 ◽  
Vol 704 ◽  
pp. 225-234 ◽  
Author(s):  
Peter Franz ◽  
Aamir Mukhtar ◽  
Warwick Downing ◽  
Graeme Smith ◽  
Ben Jackson

Gas atomized Ti-6Al-4V (Ti64) alloy powder was used to prepare distinct designed geometries with different properties by selective laser melting (SLM). Several heat treatments were investigated to find suitable processing parameters to strengthen (specially to harden) these parts for different applications. The results showed significant differences between tabulated results for heat treated billet Ti64 and SLM produced Ti64 parts, while certain mechanical properties of SLM Ti64 parts could be improved by different heat treatments using different processing parameters. Most heat treatments performed followed the trends of a reduction in tensile strength while improving ductility compared with untreated SLM Ti64 parts.Gas nitriding [GN] (diffusion-based thermo-chemical treatment) has been combined with a selected heat treatment for interstitial hardening. Heat treatment was performed below β-transus temperature using minimum flow of nitrogen gas with a controlled low pressure. The surface of the SLM produced Ti64 parts after gas nitriding showed TiN and Ti2N phases (“compound layer”, XRD analysis) and α (N) – Ti diffusion zones as well as high values of micro-hardness as compared to untreated SLM produced Ti64 parts. The microhardness profiles on cross section of the gas nitrided SLM produced samples gave information about the i) microhardness behaviour of the material, and ii) thickness of the nitrided layer, which was investigated using energy dispersive spectroscopy (EDS) and x-ray elemental analysis. Tensile properties of the gas nitrided Ti64 bars produced by SLM under different conditions were also reported.


Sign in / Sign up

Export Citation Format

Share Document