scholarly journals Wind Turbine Bearing Temperature Forecasting Using a New Data-Driven Ensemble Approach

Machines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 248
Author(s):  
Guangxi Yan ◽  
Chengqing Yu ◽  
Yu Bai

The bearing temperature forecasting provide can provide early detection of the gearbox operating status of wind turbines. To achieve high precision and reliable performance in bearing temperature forecasting, a novel hybrid model is proposed in the paper, which is composed of three phases. Firstly, the variational mode decomposition (VMD) method is employed to decompose raw bearing temperature data into several sub-series with different frequencies. Then, the SAE-GMDH method is utilized as the predictor in the subseries. The stacked autoencoder (SAE) is for the low-latitude features of raw data, while the group method of data handling (GMDH) is applied for the sub-series forecasting. Finally, the imperialist competitive algorithm (ICA) optimizes the weights for subseries and combines them to achieve the final forecasting results. By analytical investigation and comparing the final prediction results in all experiments, it can be summarized that (1) the proposed model has achieved excellent prediction outcome by integrating optimization algorithms with predictors; (2) the experiment results proved that the proposed model outperformed other selective models, with higher accuracies in all datasets, including three state-of-the-art models.

Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 312
Author(s):  
Guangxi Yan ◽  
Chengqing Yu ◽  
Yu Bai

The axle temperature is an index factor of the train operating conditions. The axle temperature forecasting technology is very meaningful in condition monitoring and fault diagnosis to realize early warning and to prevent accidents. In this study, a data-driven hybrid approach consisting of three steps is utilized for the prediction of locomotive axle temperatures. In stage I, the Complementary empirical mode decomposition (CEEMD) method is applied for preprocessing of datasets. In stage II, the Bi-directional long short-term memory (BILSTM) will be conducted for the prediction of subseries. In stage III, the Particle swarm optimization and gravitational search algorithm (PSOGSA) can optimize and ensemble the weights of the objective function, and combine them to achieve the final forecasting. Each part of the combined structure contributes its functions to achieve better prediction accuracy than single models, the verification processes of which are conducted in the three measured datasets for forecasting experiments. The comparative experiments are chosen to test the performance of the proposed model. A sensitive analysis of the hybrid model is also conducted to test its robustness and stability. The results prove that the proposed model can obtain the best prediction results with fewer errors between the comparative models and effectively represent the changing trend in axle temperature.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Waqas Ahmad ◽  
Muhammad Aamir ◽  
Umair Khalil ◽  
Muhammad Ishaq ◽  
Nadeem Iqbal ◽  
...  

The accuracy of time series forecasting is more important and can assist organizations to take up-to-date decisions for better planning and management. Several classical econometrics and computational approaches show promising results for the ordinary time series forecasting tasks, but they are not satisfactory in crude oil price forecasting. Ensemble empirical mode decomposition (EEMD) not only resolves the problem of nonlinearity and nonstationarity of time series prediction but also creates some problems (i.e., mood mixing and splitting). In this study, we proposed a new hybrid method that combines the median ensemble empirical mode decomposition and group method of data handling (MEEMD-GMDH) to reduce mood splitting problems and forecast crude oil price. MEEMD is achieved by replacing the mean operator with the median operator during the EEMD process. For testing and validation purposes of the different models, the two-seat stamp benchmarked crude oil price data are used (i.e., Brent and West Texas Intermediate (WTI)). To check the proposed model performance, different evaluation measures are used including Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Diebold-Mariano (DM) test. All the forecasting accuracy measures confirmed that our proposed model performs well in crude oil prices forecasting as compared to other hybrid models.


2021 ◽  
pp. 1-16
Author(s):  
Ibtissem Gasmi ◽  
Mohamed Walid Azizi ◽  
Hassina Seridi-Bouchelaghem ◽  
Nabiha Azizi ◽  
Samir Brahim Belhaouari

Context-Aware Recommender System (CARS) suggests more relevant services by adapting them to the user’s specific context situation. Nevertheless, the use of many contextual factors can increase data sparsity while few context parameters fail to introduce the contextual effects in recommendations. Moreover, several CARSs are based on similarity algorithms, such as cosine and Pearson correlation coefficients. These methods are not very effective in the sparse datasets. This paper presents a context-aware model to integrate contextual factors into prediction process when there are insufficient co-rated items. The proposed algorithm uses Latent Dirichlet Allocation (LDA) to learn the latent interests of users from the textual descriptions of items. Then, it integrates both the explicit contextual factors and their degree of importance in the prediction process by introducing a weighting function. Indeed, the PSO algorithm is employed to learn and optimize weights of these features. The results on the Movielens 1 M dataset show that the proposed model can achieve an F-measure of 45.51% with precision as 68.64%. Furthermore, the enhancement in MAE and RMSE can respectively reach 41.63% and 39.69% compared with the state-of-the-art techniques.


2021 ◽  
Vol 11 (8) ◽  
pp. 3636
Author(s):  
Faria Zarin Subah ◽  
Kaushik Deb ◽  
Pranab Kumar Dhar ◽  
Takeshi Koshiba

Autism spectrum disorder (ASD) is a complex and degenerative neuro-developmental disorder. Most of the existing methods utilize functional magnetic resonance imaging (fMRI) to detect ASD with a very limited dataset which provides high accuracy but results in poor generalization. To overcome this limitation and to enhance the performance of the automated autism diagnosis model, in this paper, we propose an ASD detection model using functional connectivity features of resting-state fMRI data. Our proposed model utilizes two commonly used brain atlases, Craddock 200 (CC200) and Automated Anatomical Labelling (AAL), and two rarely used atlases Bootstrap Analysis of Stable Clusters (BASC) and Power. A deep neural network (DNN) classifier is used to perform the classification task. Simulation results indicate that the proposed model outperforms state-of-the-art methods in terms of accuracy. The mean accuracy of the proposed model was 88%, whereas the mean accuracy of the state-of-the-art methods ranged from 67% to 85%. The sensitivity, F1-score, and area under receiver operating characteristic curve (AUC) score of the proposed model were 90%, 87%, and 96%, respectively. Comparative analysis on various scoring strategies show the superiority of BASC atlas over other aforementioned atlases in classifying ASD and control.


Author(s):  
Masoumeh Zareapoor ◽  
Jie Yang

Image-to-Image translation aims to learn an image from a source domain to a target domain. However, there are three main challenges, such as lack of paired datasets, multimodality, and diversity, that are associated with these problems and need to be dealt with. Convolutional neural networks (CNNs), despite of having great performance in many computer vision tasks, they fail to detect the hierarchy of spatial relationships between different parts of an object and thus do not form the ideal representative model we look for. This article presents a new variation of generative models that aims to remedy this problem. We use a trainable transformer, which explicitly allows the spatial manipulation of data within training. This differentiable module can be augmented into the convolutional layers in the generative model, and it allows to freely alter the generated distributions for image-to-image translation. To reap the benefits of proposed module into generative model, our architecture incorporates a new loss function to facilitate an effective end-to-end generative learning for image-to-image translation. The proposed model is evaluated through comprehensive experiments on image synthesizing and image-to-image translation, along with comparisons with several state-of-the-art algorithms.


2021 ◽  
Vol 316 ◽  
pp. 661-666
Author(s):  
Nataliya V. Mokrova

Current cobalt processing practices are described. This article discusses the advantages of the group argument accounting method for mathematical modeling of the leaching process of cobalt solutions. Identification of the mathematical model of the cascade of reactors of cobalt-producing is presented. Group method of data handling is allowing: to eliminate the need to calculate quantities of chemical kinetics; to get the opportunity to take into account the results of mixed experiments; to exclude the influence of random interference on the simulation results. The proposed model confirms the capabilities of the group method of data handling for describing multistage processes.


2018 ◽  
Vol 8 (10) ◽  
pp. 1754 ◽  
Author(s):  
Tongxiang Liu ◽  
Shenzhong Liu ◽  
Jiani Heng ◽  
Yuyang Gao

Wind speed forecasting plays a crucial role in improving the efficiency of wind farms, and increases the competitive advantage of wind power in the global electricity market. Many forecasting models have been proposed, aiming to enhance the forecast performance. However, some traditional models used in our experiment have the drawback of ignoring the importance of data preprocessing and the necessity of parameter optimization, which often results in poor forecasting performance. Therefore, in order to achieve a more satisfying performance in forecasting wind speed data, a new short-term wind speed forecasting method which consists of Ensemble Empirical Mode Decomposition (EEMD) for data preprocessing, and the Support Vector Machine (SVM)—whose key parameters are optimized by the Cuckoo Search Algorithm (CSO)—is developed in this paper. This method avoids the shortcomings of some traditional models and effectively enhances the forecasting ability. To test the prediction ability of the proposed model, 10 min wind speed data from wind farms in Shandong Province, China, are used for conducting experiments. The experimental results indicate that the proposed model cannot only improve the forecasting accuracy, but can also be an effective tool in assisting the management of wind power plants.


Author(s):  
Yinfei Yang ◽  
Gustavo Hernandez Abrego ◽  
Steve Yuan ◽  
Mandy Guo ◽  
Qinlan Shen ◽  
...  

In this paper, we present an approach to learn multilingual sentence embeddings using a bi-directional dual-encoder with additive margin softmax. The embeddings are able to achieve state-of-the-art results on the United Nations (UN) parallel corpus retrieval task. In all the languages tested, the system achieves P@1 of 86% or higher. We use pairs retrieved by our approach to train NMT models that achieve similar performance to models trained on gold pairs. We explore simple document-level embeddings constructed by averaging our sentence embeddings. On the UN document-level retrieval task, document embeddings achieve around 97% on P@1 for all experimented language pairs. Lastly, we evaluate the proposed model on the BUCC mining task. The learned embeddings with raw cosine similarity scores achieve competitive results compared to current state-of-the-art models, and with a second-stage scorer we achieve a new state-of-the-art level on this task.


Author(s):  
Kaixuan Chen ◽  
Lina Yao ◽  
Dalin Zhang ◽  
Bin Guo ◽  
Zhiwen Yu

Multi-modality is an important feature of sensor based activity recognition. In this work, we consider two inherent characteristics of human activities, the spatially-temporally varying salience of features and the relations between activities and corresponding body part motions. Based on these, we propose a multi-agent spatial-temporal attention model. The spatial-temporal attention mechanism helps intelligently select informative modalities and their active periods. And the multiple agents in the proposed model represent activities with collective motions across body parts by independently selecting modalities associated with single motions. With a joint recognition goal, the agents share gained information and coordinate their selection policies to learn the optimal recognition model. The experimental results on four real-world datasets demonstrate that the proposed model outperforms the state-of-the-art methods.


2020 ◽  
Vol 17 (3) ◽  
pp. 849-865
Author(s):  
Zhongqin Bi ◽  
Shuming Dou ◽  
Zhe Liu ◽  
Yongbin Li

Neural network methods have been trained to satisfactorily learn user/product representations from textual reviews. A representation can be considered as a multiaspect attention weight vector. However, in several existing methods, it is assumed that the user representation remains unchanged even when the user interacts with products having diverse characteristics, which leads to inaccurate recommendations. To overcome this limitation, this paper proposes a novel model to capture the varying attention of a user for different products by using a multilayer attention framework. First, two individual hierarchical attention networks are used to encode the users and products to learn the user preferences and product characteristics from review texts. Then, we design an attention network to reflect the adaptive change in the user preferences for each aspect of the targeted product in terms of the rating and review. The results of experiments performed on three public datasets demonstrate that the proposed model notably outperforms the other state-of-the-art baselines, thereby validating the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document