scholarly journals Marine-Derived Natural Compounds for the Treatment of Parkinson’s Disease

Marine Drugs ◽  
2019 ◽  
Vol 17 (4) ◽  
pp. 221 ◽  
Author(s):  
Chunhui Huang ◽  
Zaijun Zhang ◽  
Wei Cui

Parkinson’s disease (PD) is a neurodegenerative disorder caused by the loss of dopaminergic neurons, leading to the motor dysfunctions of patients. Although the etiology of PD is still unclear, the death of dopaminergic neurons during PD progress was revealed to be associated with the abnormal aggregation of α-synuclein, the elevation of oxidative stress, the dysfunction of mitochondrial functions, and the increase of neuroinflammation. However, current anti-PD therapies could only produce symptom-relieving effects, because they could not provide neuroprotective effects, stop or delay the degeneration of dopaminergic neurons. Marine-derived natural compounds, with their novel chemical structures and unique biological activities, may provide anti-PD neuroprotective effects. In this study, we have summarized anti-PD marine-derived natural products which have shown pharmacological activities by acting on various PD targets, such as α-synuclein, monoamine oxidase B, and reactive oxygen species. Moreover, marine-derived natural compounds currently evaluated in the clinical trials for the treatment of PD are also discussed.

2019 ◽  
Vol 20 (20) ◽  
pp. 5208 ◽  
Author(s):  
Bongki Cho ◽  
Taeyun Kim ◽  
Yu-Jin Huh ◽  
Jaemin Lee ◽  
Yun-Il Lee

Parkinson’s disease (PD) is a well-known age-related neurodegenerative disorder associated with longer lifespans and rapidly aging populations. The pathophysiological mechanism is a complex progress involving cellular damage such as mitochondrial dysfunction and protein homeostasis. Age-mediated degenerative neurological disorders can reduce the quality of life and also impose economic burdens. Currently, the common treatment is replacement with levodopa to address low dopamine levels; however, this does not halt the progression of PD and is associated with adverse effects, including dyskinesis. In addition, elderly patients can react negatively to treatment with synthetic neuroprotection agents. Recently, natural compounds such as phytochemicals with fewer side effects have been reported as candidate treatments of age-related neurodegenerative diseases. This review focuses on mitochondrial dysfunction, oxidative stress, hormesis, proteostasis, the ubiquitin‒proteasome system, and autophagy (mitophagy) to explain the neuroprotective effects of using natural products as a therapeutic strategy. We also summarize the efforts to use natural extracts to develop novel pharmacological candidates for treatment of age-related PD.


2020 ◽  
Vol 21 (19) ◽  
pp. 7329
Author(s):  
Eslam El Nebrisi ◽  
Hayate Javed ◽  
Shreesh K Ojha ◽  
Murat Oz ◽  
Safa Shehab

Parkinson’s disease (PD) is a common neurodegenerative disorder, characterized by selective degeneration of dopaminergic nigrostriatal neurons. Most of the existing pharmacological approaches in PD consider replenishing striatal dopamine. It has been reported that activation of the cholinergic system has neuroprotective effects on dopaminergic neurons, and human α7-nicotinic acetylcholine receptor (α7-nAChR) stimulation may offer a potential therapeutic approach in PD. Our recent in-vitro studies demonstrated that curcumin causes significant potentiation of the function of α7-nAChRs expressed in Xenopus oocytes. In this study, we conducted in vivo experiments to assess the role of the α7-nAChR on the protective effects of curcumin in an animal model of PD. Intra-striatal injection of 6-hydroxydopmine (6-OHDA) was used to induce Parkinsonism in rats. Our results demonstrated that intragastric curcumin treatment (200 mg/kg) significantly improved the abnormal motor behavior and offered neuroprotection against the reduction of dopaminergic neurons, as determined by tyrosine hydroxylase (TH) immunoreactivity in the substantia nigra and caudoputamen. The intraperitoneal administration of the α7-nAChR-selective antagonist methyllycaconitine (1 µg/kg) reversed the neuroprotective effects of curcumin in terms of both animal behavior and TH immunoreactivity. In conclusion, this study demonstrates that curcumin has a neuroprotective effect in a 6-hydroxydopmine (6-OHDA) rat model of PD via an α7-nAChR-mediated mechanism.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Huynh Kim Thoa Truong ◽  
Man Anh Huynh ◽  
My Dung Vuu ◽  
Thi Phuong Thao Dang

Parkinson’s disease (PD), which is characterized by the decreased motor function and the loss of dopaminergic neurons, is a common neurodegenerative disorder in elders. There have been numerous in vitro and in vivo models developed to study mechanisms of PD and screen potential drug. Recently, dUCH-knockdown Drosophila model has been established and showed potential for screening antioxidants for PD treatment. The dUCH-knockdown Drosophila model of PD mimics most of main PD pathologies such as dopaminergic neurons degeneration, locomotor dysfunction, and shortage of dopamine in the brain. Common purslane (Portulaca oleracea L.) is a nutritious vegetable containing a variety of antioxidants, levodopa, and dopamine, a neurotransmitter closely related to PD. Purslane has been reported to exert neuroprotective effects against several neurotoxins including rotenone and 6-OHDA in PD models. However, the recent data have not provided sufficient evidence for using purslane to treat PD or decelerate disease progression. Therefore, in this study, we utilized dUCH-knockdown fly to evaluate the capacity of purslane extracts for PD treatment. The results showed that purslane extracts improved locomotor ability in the larval stage and decelerated disease progression in the adult stage. Additionally, purslane extracts also reduced dopaminergic neuron degeneration. Taken together, our data strongly demonstrated that purslane extracts effectively rescued PD-like phenotypes in the fly model. This result contributed a foundation for further study on the application of purslane in PD treatment.


2021 ◽  
pp. 1-15
Author(s):  
Zijuan Zhang ◽  
Li Hao ◽  
Ming Shi ◽  
Ziyang Yu ◽  
Simai Shao ◽  
...  

Background: Glucagon-like peptide 2 (GLP-2) is a peptide hormone derived from the proglucagon gene expressed in the intestines, pancreas and brain. Some previous studies showed that GLP-2 improved aging and Alzheimer’s disease related memory impairments. Parkinson’s disease (PD) is a progressive neurodegenerative disorder, and to date, there is no particular medicine reversed PD symptoms effectively. Objective: The aim of this study was to evaluate neuroprotective effects of a GLP-2 analogue in the 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) PD mouse model. Methods: In the present study, the protease resistant Gly(2)-GLP-2 (50 nmol/kg ip.) analogue has been tested for 14 days by behavioral assessment, transmission electron microscope, immunofluorescence histochemistry, enzyme-linked immunosorbent assay and western blot in an acute PD mouse model induced by MPTP. For comparison, the incretin receptor dual agonist DA5-CH was tested in a separate group. Results: The GLP-2 analogue treatment improved the locomotor and exploratory activity of mice, and improved bradykinesia and movement imbalance of mice. Gly(2)-GLP-2 treatment also protected dopaminergic neurons and restored tyrosine hydroxylase expression levels in the substantia nigra. Gly(2)-GLP-2 furthermore reduced the inflammation response as seen in lower microglia activation, and decreased NLRP3 and interleukin-1β pro-inflammatory cytokine expression levels. In addition, the GLP-2 analogue improved MPTP-induced mitochondrial dysfunction in the substantia nigra. The protective effects were comparable to those of the dual agonist DA5-CH. Conclusion: The present results demonstrate that Gly(2)-GLP-2 can attenuate NLRP3 inflammasome-mediated inflammation and mitochondrial damage in the substantia nigra induced by MPTP, and Gly(2)-GLP-2 shows neuroprotective effects in this PD animal model.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Ting Sun ◽  
Zhe-Xu Ding ◽  
Xin Luo ◽  
Qing-Shan Liu ◽  
Yong Cheng

Parkinson’s disease (PD) is a common and complex neurodegenerative disease; the pathogenesis of which is still uncertain. Exosomes, nanosized extracellular vesicles, have been suggested to participate in the pathogenesis of PD, but their role is unknown. Here, a metabolomic analysis of serum and brain exosomes showed differentially expressed metabolites between 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine hydrochloride- (MPTP-) induced PD mice and control mice, such as oxidized lipids, vitamins, and cholesterol. These metabolites were enriched in coenzyme, nicotinamide, and amino acid pathways related to PD, and they could be served as preclinical biomarkers. We further found that blood-derived exosomes from healthy volunteers alleviated impaired motor coordination in MPTP-treated mice. Results from immunohistochemistry and western blotting indicated that the loss of dopaminergic neurons in substantia nigra and striatum of PD model mice was rescued by the exosome treatment. The exosome treatment also restored the homeostasis of oxidative stress, neuroinflammation, and cell apoptosis in the model mice. These results suggest that exosomes are important mediators for PD pathogenesis, and exosomes are promising targets for the diagnosis and treatment of PD.


The neurodegenerative disorder is a prolonged persistence curse and effect on economic and physical challenges in an aging world. Parkinson has come in the second category of disability disorders and associated with progressive dopaminergic neuronal degeneration with severe motor complications. It is an observation that gradual disease progression causes 70% degeneration of striatal dopaminergic neurons. Globally there are around 7-10 million patients with Parkinson's disease, however, there are huge efforts for therapeutic improvement. According to studies, no single molecular pathway was pointed out as a single etiology to control disease progression due to a lack of targeted therapeutic strategies. Previously implemented symptomatic treatments include L-dopa (L-3,4-dihydroxyphenylalanine), deep brain stimulation, and the surgical insertion of a medical device. This leads to dyskinesia, dystonia and a higher risk of major surgical complications respectively. However, not all the above-mentioned therapies cannot regenerate the dopaminergic neurons in Parkinson’s disease patients. Recent advances in the field of cellular therapy have shown promising outcomes by differentiation of multipotent mesenchymal stem cells into dopaminergic neurons under the influence of a regenerative substance. In this review, we have discussed the differentiation of dopaminergic neurons by using different cell types that can be used as a cellular therapeutic approach for Parkinson’s disease. The information was collected through a comprehensive search using the keywords, “Parkinson Disease, Dopamine, Brain derived neurotrophic factor and neuron from reliable search engines, PubMed, Google Scholar and Medline reviews from the year 2010 to 2020.


2020 ◽  
Author(s):  
Brett Fulleylove-Krause ◽  
Samantha Sison ◽  
Allison Ebert

Abstract Objectives: Parkinson’s disease (PD) is a common neurodegenerative disorder caused by the loss of dopaminergic neurons in the substantia nigra. Although the underlying mechanisms of dopaminergic neuron loss is not fully understood, evidence suggests mitochondrial malfunction as a key contributor to disease pathogenesis. We previously found that human PD patient stem cell-derived dopaminergic neurons exhibit reduced nicotinamide adenine dinucleotide (NAD+) levels and reduce activity of sirtuins, a group of NAD+-dependent deacetylase enzymes that participate in the regulation of mitochondrial function, energy production, and cell survival. Thus, here we tested whether treatment of PD stem cell-derived dopaminergic neurons with nicotinamide mononucleotide (NMN), an NAD+ precursor, could increase NAD+ levels and improve sirtuin activity. Results: We treated PD iPSC-derived dopaminergic neurons with NMN and found that NAD+ levels did increase. The deacetylase activity of sirtuin (SIRT) 2 was improved with NMN treatment, but NMN had no impact on deacetylase activity of SIRT 1 or 3. These results suggest that NMN can restore NAD+ levels and SIRT 2 activity, but that additional mechanisms are involved SIRT 1 and 3 dysregulation in PD dopaminergic neurons.


Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 610
Author(s):  
Junjie Yan ◽  
Weiwei Liu ◽  
Jiatong Cai ◽  
Yiming Wang ◽  
Dahong Li ◽  
...  

Phenazines are a large group of nitrogen-containing heterocycles, providing diverse chemical structures and various biological activities. Natural phenazines are mainly isolated from marine and terrestrial microorganisms. So far, more than 100 different natural compounds and over 6000 synthetic derivatives have been found and investigated. Many phenazines show great pharmacological activity in various fields, such as antimicrobial, antiparasitic, neuroprotective, insecticidal, anti-inflammatory and anticancer activity. Researchers continued to investigate these compounds and hope to develop them as medicines. Cimmino et al. published a significant review about anticancer activity of phenazines, containing articles from 2000 to 2011. Here, we mainly summarize articles from 2012 to 2021. According to sources of compounds, phenazines were categorized into natural phenazines and synthetic phenazine derivatives in this review. Their pharmacological activities, mechanisms of action, biosynthetic pathways and synthetic strategies were summarized. These may provide guidance for the investigation on phenazines in the future.


2015 ◽  
Vol 26 (24) ◽  
pp. 4478-4491 ◽  
Author(s):  
BK. Binukumar ◽  
Varsha Shukla ◽  
Niranjana D. Amin ◽  
Philip Grant ◽  
M. Bhaskar ◽  
...  

Parkinson’s disease (PD) is a chronic neurodegenerative disorder characterized by the loss of dopamine neurons in the substantia nigra, decreased striatal dopamine levels, and consequent extrapyramidal motor dysfunction. Recent evidence indicates that cyclin-dependent kinase 5 (Cdk5) is inappropriately activated in several neurodegenerative conditions, including PD. To date, strategies to specifically inhibit Cdk5 hyperactivity have not been successful without affecting normal Cdk5 activity. Previously we reported that TFP5 peptide has neuroprotective effects in animal models of Alzheimer’s disease. Here we show that TFP5/TP5 selective inhibition of Cdk5/p25 hyperactivation in vivo and in vitro rescues nigrostriatal dopaminergic neurodegeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP/MPP+) in a mouse model of PD. TP5 peptide treatment also blocked dopamine depletion in the striatum and improved gait dysfunction after MPTP administration. The neuroprotective effect of TFP5/TP5 peptide is also associated with marked reduction in neuroinflammation and apoptosis. Here we show selective inhibition of Cdk5/p25 ­hyperactivation by TFP5/TP5 peptide, which identifies the kinase as a potential therapeutic target to reduce neurodegeneration in Parkinson’s disease.


Sign in / Sign up

Export Citation Format

Share Document