scholarly journals The Distribution of Asterosaponins, Polyhydroxysteroids and Related Glycosides in Different Body Components of the Far Eastern Starfish Lethasterias fusca

Marine Drugs ◽  
2019 ◽  
Vol 17 (9) ◽  
pp. 523 ◽  
Author(s):  
Roman S. Popov ◽  
Natalia V. Ivanchina ◽  
Alla A. Kicha ◽  
Timofey V. Malyarenko ◽  
Boris B. Grebnev ◽  
...  

Glycoconjugated and other polar steroids of starfish have unique chemical structures and show a broad spectrum of biological activities. However, their biological functions remain not well established. Possible biological roles of these metabolites might be indicated by the studies on their distribution in the organism–producer. In order to investigate the localization of polar steroids in body components of the Far Eastern starfish Lethasterias fusca, chemical constituents of body walls, gonads, stomach, pyloric caeca, and coelomic fluid were studied by nanoflow liquid chromatography/mass spectrometry with captive spray ionization (nLC/CSI–QTOF–MS). It has been shown that the levels of polar steroids in the studied body components are qualitatively and quantitatively different. Generally, the obtained data confirmed earlier made assumptions about the digestive function of polyhydroxysteroids and protective role of asterosaponins. The highest level of polar steroids was found in the stomach. Asterosaponins were found in all body components, the main portion of free polyhydroxysteroids and related glycosides were located in the pyloric caeca. In addition, a great inter-individual variability was found in the content of most polar steroids, which may be associated with the peculiarities in their individual physiologic status.

2020 ◽  
Vol 23 (1) ◽  
pp. 65-77 ◽  
Author(s):  
Mohammad Musarraf Hussain

Erythrina is a significant source of phytoconstituents. The aim of this review is to solicitude of classification, synthesis, and phytochemicals with biological activities of Erythrina. In our previous review on this genus (Hussain et. al., 2016a) fifteen species (Erythrina addisoniae, E. caribeae, E. indica, E. lattisima, E. melanacantha, E. mildbraedii, E. poeppigiama, E. stricta, E. subumbrans, E. veriagata, E. vespertilio, E. velutina, E. zeberi, E. zeyheri and E. americana) have been studied and 155 molecules with chemical structures were reported. A further comprehensive review was done upon continuation on the same genus and thirteen species (E. abyssinica, E. arborescens, E. berteroana, E. burttii, E. caffra, E. coralloids, E. crista-galli, E. fusca, E. herbaceae, E. lysistemon, E. mulungu, E. speciosa and E. tahitensis) of Erythrina have been studied and 127 compounds are reported as phytoconstituents with their chemical structure in this review. Erythrina crista-galli and E. lysistemon consist of highest number of chemical constituents. Bangladesh Pharmaceutical Journal 23(1): 65-77, 2020


Author(s):  
Truong Nhat Van Do ◽  
Hai Xuan Le ◽  
Tho Huu Le ◽  
Mai Thanh Thi Nguyen

Curcuma zedoaria (Berg.), belongs to the Zingiberaceae family, is one of the medicinal plants that is found in Southeast Asia. This plant is known as “Nghe tim” in Vietnam; and a decoction of its rhizomes has been used traditionally for the cure flatulence, fatigue, and hepatitis. Previously, some studies on the chemical constituent of the rhizomes of C. zedoaria have reported plenty of curcuminoids and sesquiterpenoids together with their derivatives, which have shown a lot of various bioactivities such as antiproliferative characteristic, anti-ulcer, antioxidant and antibacterial potential. By chromatography column method along with preparative thin layer chromatography on a normal phase silica gel on the EtOAc extract of the rhizomes of Curcuma zedoaria, we have isolated five pure compounds. Their chemical structures have been elucidated by NMR techniques and comparison with publishing data that have determined to be gajustulactone A (1), isozedoarondiol (2), neolitacumone (3), β-sitosterol (4), and β-stigmasterol (5). The results of this study have contributed to the scientific data system on the chemical composition of Vietnamese medicinal plants, especially the rhizomes of Curcuma zedoaria grown in Tinh Bien, An Giang. Therefore, there is more evidence to continue screening studies to detect interesting biological activities from this species.


2012 ◽  
Vol 67 (3-4) ◽  
pp. 144-150 ◽  
Author(s):  
Wafaa Hassan ◽  
Amal Gendy ◽  
Hanan Al-youssef ◽  
Assem El-Shazely

1A new eremophilane sesquiterpene, 1-β-hydroxy-8-oxoeremophila-7,9-dien-12-oic acid (), in addition to two known fl avonol glycosides, rutin (2) and quercetin-3-O-glucoside- 7-O-rutinoside (3), was isolated from the ethyl acetate fraction obtained from the aqueous alcoholic extract of the aerial parts of Senecio aegyptius var. discoideus Boiss. (family Asteraceae). The chemical structures of the isolated compounds were established by 1D and 2D NMR analysis (1H, 13C, COSY, HMQC, HMBC), MS and UV data, and through comparison with the literature. The ethyl acetate fraction and the isolated rutin showed significant cytotoxic activity against colorectal carcinoma (HCT 116) and to less extent against brain (U 251) and breast carcinoma (MCF 7). The ethyl acetate fraction showed a significant level of activity against Klebsiella pneumoniae, while the total extract showed the best antifungal activity against Candida albicans and Saccharomyces cerevisiae. DPPH radical scavenging activity of the ethyl acetate fraction was significant (96.7%) when compared to ascorbic acid. It also showed anti-inflammatory activity but no diuretic effect


1979 ◽  
Vol 07 (02) ◽  
pp. 103-141 ◽  
Author(s):  
Shoji Shibata

Some herbal drugs commonly used in Chinese medicine have been studied chemically in correlation with their biological activities. In many cases it has been recognized that some characteristic chemical constituents could represent the therapeutical actions of the drugs. It is noted that elucidation of their chemical structures in view of the structure-activity relationship provides scientific evidence for the beneficial uses of traditional drugs in health care and, furthermore, promotes the discovering of new therapeutics from them. The principles of Chinese drugs are distributed widely among almost all the chemical groups of natural products, for example, simple phenolics, lignan, flavonoid, quinonoid, lower terpenes, triterpenoid, steroid, true alkaloid, protoalkaloid or amines and simple and polymolecular carbonhydrates. In the present article, the chemical principles of some important Chinese drugs currently used are discussed mainly on the basis of our own investigations, and we refer to other works for a general understanding of the present status on the chemical approach to studies of Chinese drugs and medicines.


Author(s):  
Lien Hoa Dieu Nguyen ◽  
Hào Chí Lê ◽  
Thy Ngoc Diem Nguyen ◽  
Ly Thi Thao Nguyen ◽  
Le Thu Thi Nguyen ◽  
...  

Aglaia is the largest genus of the Meliaceae family with about 120 species, which grow mainly in the tropical and subtropical regions. In Vietnam, the genus contains about 30 species. Many are used in folk medicine for the treatment of different diseases. Rocaglamides, bisamides, lignans, triterpenoids and steroids are the main classes of compounds found in the genus. Some of them exhibit diverse biological activities. This research work reports the isolation of four compounds from A. odorata and A. hoaensis. Extraction was carried out using Soxhlet extractors with organic solvents followed by concentration of the solvents to yield crude extracts. Isolation was performed using column chromatography on silica gel and gel permeation on Sephadex LH-20. Chemical structures were determined using 1D NMR (1H, 13C NMR, DEPT), 2D NMR (HSQC, HMBC, COSY, NOESY), IR and HRESIMS spectroscopic methods, and comparison of the spectral data with those in literature. Two triterpenoids, aglaiadoratol and 3b -friedelinol, were isolated from the whole tree of A. odorata. Two other compounds, (+)-syringaresinol lignan and threo-9,10-O-isopropylidene- 13-hydroxy-(11E)-octadecenoic acid, a derivative of fatty acid, were obtained from the bark of A. hoaensis. Among the four isolated compounds, this is the first time that aglaiadoratol has been reported in the world. In addition, (+)-syringares inol ligan and threo-9,10-O-isopropylidene-13- hydroxy-(11E)-octadecenoic acid are reported here for the first time in A. hoaensis.


Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
JJ Chen ◽  
CW Ting ◽  
MH Yen ◽  
TL Hwang ◽  
C Peng ◽  
...  

2020 ◽  
Vol 17 ◽  
Author(s):  
Deepak Kumar Singh ◽  
Mayank Kulshreshtha ◽  
Yogesh Kumar ◽  
Pooja A Chawla ◽  
Akash Ved ◽  
...  

Background: The pyrazolines give the reactions of aliphatic derivatives, resembling unsaturated compounds in their behavior towards permanganate and nascent hydrogen. This nucleus has been associated with various biological activities including inflammatory. Thiazolinone is a heterocyclic compound that contains both sulfur and nitrogen atom with a carbonyl group in their structure.Thiazolinone and their derivatives have attracted continuing interest because of their various biological activities, such as anti-inflammatory, antimicrobial, anti-proliferative, antiviral, anticonvulsant etc. The aim of the research was to club pyrazoline nucleus with thiazolinone in order to have significantanti-inflammatory activity. The synthesized compounds were chemically characterized for the establishment of their chemical structures and to evaluate as anti-inflammatory agent. Method: In the present work, eight derivatives of substituted pyrazoline (PT1-PT8) were synthesized by a three step reaction.The compounds were subjected to spectral analysis by Infrared, Mass and Nuclear magnetic resonance spectroscopy and elemental analysis data. All the synthesized were evaluated for their in vivo anti-inflammatory activity. The synthesized derivatives were evaluated for their affinity towards target COX-1 and COX-2, using indomethacin as the reference compound molecular docking visualization through AutoDock Vina. Results: Compounds PT-1, PT-3, PT-4 and PT-8 exhibited significant anti-inflammatory activity at 3rd hour being 50.7%, 54.3%, 52.3% and 57% respectively closer to that of the standard drug indomethacin (61.9%).From selected anti-inflammatory targets, the synthesized derivatives exhibited better interaction with COX-1 and COX-2 receptor, where indomethacin showed docking score of -6.5 kJ/mol, compound PT-1 exhibited highest docking score of -9.1 kJ/mol for COX-1 and compound PT-8 having docking score of 9.4 kJ/mol for COX-2. Conclusion: It was concluded that synthesized derivatives have more interaction with COX-2 receptors in comparison to the COX-1 receptors because the docking score with COX-2 receptors were very good. It is concluded that the synthesized derivatives (PT-1 to PT-8) are potent COX-2 inhibitors.


2019 ◽  
Vol 16 (6) ◽  
pp. 568-577 ◽  
Author(s):  
Jainara Santos do Nascimento ◽  
João Carlos Silva Conceição ◽  
Eliane de Oliveira Silva

Coumarins are natural 1,2-benzopyrones, present in remarkable amounts as secondary metabolites in edible and medicinal plants. The low yield in the coumarins isolation from natural sources, along with the difficulties faced by the total synthesis, make them attractive for biotechnological studies. The current literature contains several reports on the biotransformation of coumarins by fungi, which can generate chemical analogs with high selectivity, using mild and eco-friendly conditions. Prompted by the enormous pharmacological interest in the coumarin-related compounds, their alimentary and chemical applications, this review covers the biotransformation of coumarins by filamentous fungi. The chemical structures of the analogs were presented and compared with those from the pattern structures. The main chemical reactions catalyzed the insertion of functional groups, and the impact on the biological activities caused by the chemical transformations were discussed. Several chemical reactions can be catalyzed by filamentous fungi in the coumarin scores, mainly lactone ring opening, C3-C4 reduction and hydroxylation. Chunninghamella sp. and Aspergillus sp. are the most common fungi used in these transformations. Concerning the substrates, the biotransformation of pyranocoumarins is a rarer process. Sometimes, the bioactivities were improved by the chemical modifications and coincidences with the mammalian metabolism were pointed out.


Author(s):  
Prasad Dandawate ◽  
Khursheed Ahmed ◽  
Subhash Padhye ◽  
Aamir Ahmad ◽  
Bernhard Biersack

Background: Chalcones are structurally simple compounds that are easily accessible by synthetic methods. Heterocyclic chalcones have gained the interest among scientists due to their diverse biological activities. The anti-tumor activities of heterocyclic chalcones are especially remarkable and the growing number of publications dealing with this topic warrants an up-to-date compilation. Methods: Search for antitumor active heterocyclic chalcones was carried out using Pubmed and Scifinder as common web-based literature searching tools. Pertinent and current literature is covered from 2015/2016 to 2019. Chemical structures, biological activities and modes of action of anti-tumor active heterocyclic chalcones are summarized. Results: Simply prepared chalcones have emerged over the last years with promising antitumor activities. Among them is a considerable number of tubulin polymerization inhibitors. But there are also new chalcones targeting special enzymes such as histone deacetylases or with DNA-binding properties. Conclusion: This review provides a summary of recent heterocyclic chalcone derivatives with distinct anti-tumor activities.


Author(s):  
Subbiah Latha ◽  
Palanisamy Selvamani ◽  
Thangavelu Prabha

: Natural products have a unique place in the healthcare industry. The genus Commiphora emerged as a potential medicinal with huge benefits as evidenced through its use in various traditional and modern systems of medicine. Therefore, we aimed to prepare a concise review on the pharmacological activities and the indigenous uses of various plant species belonging to the genus Commiphora along with the structural information of various active botanical ingredients present in these plants based on the published literatures and scientific reports. To collect the various published literatures on Commiphora in various journals; to study and classify the available information on the pharmacological uses and chemical constituents; and to present the gathered information as a precise review to serve as a potential reference for future research. Pharmacological and phytochemical data on Commiphora plant species were collected from various journals, books, reference materials, websites including scientific databases, etc for compilation. This review article describes the various pharmacological properties of plants of Commiphora species viz., Anti-arthritic and anti-inflammatory, Anti-atherogenic, Antibacterial, Anti-coagulant, Anti-dicrocoeliasis, Anti-epileptic, Anti-fascioliasis, Anti-fungal, Anti-heterophyidiasis, Anti-hyper cholesterolemic, Anti-hyperlipidemic, Anti-hypothyroidism, Anti-obesity, Anti-osteoarthritic, Anti-osteoclastogenesis, Anti-oxidant, Anti-parasitic, Anti-pyretic, Anti-schistosomiasis, Anti-septic, Anti-thrombotic, Anti-ulcer, Cardioprotective, COX enzyme inhibitory, Cytotoxic /Anti-carcinogenic/Anti-cancer, DNA cleavage, Hypotensive, Inhibits lipid peroxidation, Inhibits NO and NO synthase production, Insecticidal, Local anesthetic, Molluscicidal, Smooth muscle relaxant, Tick repellent activities along with toxicity studies. Furthermore, the review also included various secondary metabolites isolated from various species of Commiphora genus along with their chemical structures serve as a ready resource for researchers. We conclude that the plant species belonging to the genus Commiphora possesses abundant pharmacological properties with a huge treasure of diverse secondary metabolites within themselves. This review indicates the necessity of further in-depth research, pre-clinical and clinical studies with Commiphora genus which may help to detect the unidentified potential of the Commiphora plant species.


Sign in / Sign up

Export Citation Format

Share Document