scholarly journals Fucoidans of Moroccan Brown Seaweed as Elicitors of Natural Defenses in Date Palm Roots

Marine Drugs ◽  
2020 ◽  
Vol 18 (12) ◽  
pp. 596
Author(s):  
Soukaina Bouissil ◽  
Zainab El Alaoui-Talibi ◽  
Guillaume Pierre ◽  
Halima Rchid ◽  
Philippe Michaud ◽  
...  

Fucoidans from Moroccan brown seaweed Bifurcaria bifurcata and Fucus spiralis were tested for their elicitor activity after their purification and complete characterization. The fucoidans of B. bifurcata (BBF) and of F. spiralis (FSF) were extracted and purified then characterized by infrared spectroscopy, proton nuclear magnetic resonance spectroscopy and size exclusion chromatography. The results show that BBF and FSF are mainly sulfated with 45.49 and 49.53% (w/w) sulfate, respectively. Analysis of neutral sugars determined by gas chromatography–mass spectrometry showed that FSF and BBF were mainly composed of 64% and 91% fucose and 20% and 6% galactose, respectively, with a few other sugars such as glucose (8% in FSF), rhamnose (1% in BBF) and mannose (8% in FSF and, 2% in BBF). The eliciting activity of these sulfated polysaccharides in stimulating the natural defenses of the date palm was evaluated through the activity of phenylalanine ammonia-lyase (PAL), and the increase in phenols and lignin content in the roots. The results obtained clearly show that the two fucoidans early and intensely stimulate the natural defenses of the date palm after 24 h of treatments. This remarkable elicitor effect seems to be linked to the sulfated groups compared to non-sulfate alginates extracted from the same algae. These results open promising perspectives for a biological control approach against date palm diseases.

Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 720 ◽  
Author(s):  
Soukaina Bouissil ◽  
Zainab El Alaoui-Talibi ◽  
Guillaume Pierre ◽  
Philippe Michaud ◽  
Cherkaoui El Modafar ◽  
...  

Our study aimed to search for seaweed polysaccharides able to stimulate date palm defense mechanisms. Extraction, purification, characterization, and elicitor activity of sodium alginate (FSSA and BBSA) from Moroccan brown seaweeds Fucus spiralis and Bifurcaria bifurcata were investigated. FSSA and BBSA were characterized by proton nuclear magnetic resonance spectroscopy (1H-NMR) and size exclusion chromatography (HPLC-SEC). The mannuronic acid/guluronic acid (M/G) ratio of FSSA was M/G = 0.92 indicating that FSSA contained 48% and 52% of mannuronic and guluronic acids respectively, and the M/G ratio of BBSA was 0.47 indicating that BBSA contained 32% and 68% of mannuronic and guluronic acids respectively. Elicitor activity of FSSA and BBSA was carried out by developing an innovative study model on the date palm. The elicitor capacities were evaluated by investigating phenolic metabolism including phenylalanine ammonia-lyase (PAL) activity and total polyphenol content in seedling roots of date palm maintained in alginates solution (FSSA and BBSA) at different concentrations. The results obtained show that the PAL activity and the phenolic compound content were significantly stimulated with 1 mg·mL−1 of FSSA and BBSA; after 1 day of treatment with FSSA, and after 12 h of treatment with BBSA. These results show clearly those alginates extracted from Moroccan brown algae induced in date palm roots the stimulation of natural defense mechanisms.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1252
Author(s):  
Rodolfo M. Moraes ◽  
Layde T. Carvalho ◽  
Gizelda M. Alves ◽  
Simone F. Medeiros ◽  
Elodie Bourgeat-Lami ◽  
...  

Well-defined amphiphilic, biocompatible and partially biodegradable, thermo-responsive poly(N-vinylcaprolactam)-b-poly(ε-caprolactone) (PNVCL-b-PCL) block copolymers were synthesized by combining reversible addition-fragmentation chain transfer (RAFT) and ring-opening polymerizations (ROP). Poly(N-vinylcaprolactam) containing xanthate and hydroxyl end groups (X–PNVCL–OH) was first synthesized by RAFT/macromolecular design by the interchange of xanthates (RAFT/MADIX) polymerization of NVCL mediated by a chain transfer agent containing a hydroxyl function. The xanthate-end group was then removed from PNVCL by a radical-induced process. Finally, the hydroxyl end-capped PNVCL homopolymer was used as a macroinitiator in the ROP of ε-caprolactone (ε-CL) to obtain PNVCL-b-PCL block copolymers. These (co)polymers were characterized by Size Exclusion Chromatography (SEC), Fourier-Transform Infrared spectroscopy (FTIR), Proton Nuclear Magnetic Resonance spectroscopy (1H NMR), UV–vis and Differential Scanning Calorimetry (DSC) measurements. The critical micelle concentration (CMC) of the block copolymers in aqueous solution measured by the fluorescence probe technique decreased with increasing the length of the hydrophobic block. However, dynamic light scattering (DLS) demonstrated that the size of the micelles increased with increasing the proportion of hydrophobic segments. The morphology observed by cryo-TEM demonstrated that the micelles have a pointed-oval-shape. UV–vis and DLS analyses showed that these block copolymers have a temperature-responsive behavior with a lower critical solution temperature (LCST) that could be tuned by varying the block copolymer composition.


2021 ◽  
Author(s):  
Breeanna Urbanowicz ◽  
William Barnes ◽  
Sabina Koj ◽  
Ian Black ◽  
Stephanie Archer-Hartmann ◽  
...  

Abstract Background: In plants, there is a large diversity of polysaccharides that comprise the cell wall. Each major type of plant cell wall polysaccharide, including cellulose, hemicellulose, and pectin, has distinct structures and functions that contribute to wall mechanics and influence plant morphogenesis. In recent years, pectin modification and valorization has attracted much attention due to its expanding roles of pectin in biomass deconstruction, food science, material science, and environmental remediation. However, pectin utilization has been limited by our incomplete knowledge of pectin structure. Herein, we present a workflow of principles relevant for the characterization of polysaccharide primary structure using nature’s most complex polysaccharide, rhamnogalacturonan-II (RG-II), as a model.Results: We outline how to isolate RG-II from celery and duckweed cell wall material and red wine using chemical or enzymatic treatments coupled with size-exclusion chromatography. From there, we demonstrate the use of mass spectrometry (MS)-based techniques to determine the glycosyl residue and linkage compositions of the intact RG II molecule and RG-II-derived oligosaccharides including special considerations for labile monosaccharides. In doing so, we demonstrated that in the duckweed Wolffiella repanda the arabinopyranosyl (Arap) residue of side chain B is substituted at O-2 with rhamnose. As RG-II is further modified by non-glycosyl modifications including methyl-ethers, methyl-esters, and acetyl-esters, we then describe ways to use electrospray-MS to identify these moieties on RG-II-derived oligosaccharides. We then explored the utility of proton nuclear magnetic resonance spectroscopy (1H-NMR) in identifying RG-II-specific sugars and non-glycosyl modifications to complement and extend MS-based approaches. Finally, we describe how to assess the factors that affect RG-35 II dimerization using liquid chromatographic and NMR spectroscopic approaches.Conclusions: The complexity of pectic polysaccharide structures has hampered efforts aimed at their valorization. In this work, we used RG-II as a model to demonstrate the steps necessary to isolate and characterize polysaccharides using chromatographic, MS, and NMR techniques. The principles can be applied to the characterization of other saccharide structures and will help inform researchers on how saccharide structure relates to functional properties in the future.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3651
Author(s):  
Natalia Drabińska ◽  
Piotr Młynarz ◽  
Ben de Lacy Costello ◽  
Peter Jones ◽  
Karolina Mielko ◽  
...  

Urinary volatile compounds (VCs) have been recently assessed for disease diagnoses. They belong to very diverse chemical classes, and they are characterized by different volatilities, polarities and concentrations, complicating their analysis via a single analytical procedure. There remains a need for better, lower-cost methods for VC biomarker discovery. Thus, there is a strong need for alternative methods, enabling the detection of a broader range of VCs. Therefore, the main aim of this study was to optimize a simple and reliable liquid–liquid extraction (LLE) procedure for the analysis of VCs in urine using gas chromatography-mass spectrometry (GC-MS), in order to obtain the maximum number of responses. Extraction parameters such as pH, type of solvent and ionic strength were optimized. Moreover, the same extracts were analyzed using Proton Nuclear Magnetic Resonance Spectroscopy (1H-NMR), to evaluate the applicability of a single urine extraction for multiplatform purposes. After the evaluation of experimental conditions, an LLE protocol using 2 mL of urine in the presence of 2 mL of 1 M sulfuric acid and sodium sulphate extracted with dichloromethane was found to be optimal. The optimized method was validated with the external standards and was found to be precise and linear, and allowed for detection of >400 peaks in a single run present in at least 50% of six samples—considerably more than the number of peaks detected by solid-phase microextracton fiber pre-concentration-GC-MS (328 ± 6 vs. 234 ± 4). 1H-NMR spectroscopy of the polar and non-polar extracts extended the range to >40 more (mainly low volatility compounds) metabolites (non-destructively), the majority of which were different from GC-MS. The more peaks detectable, the greater the opportunity of assessing a fingerprint of several compounds to aid biomarker discovery. In summary, we have successfully demonstrated the potential of LLE as a cheap and simple alternative for the analysis of VCs in urine, and for the first time the applicability of a single urine solvent extraction procedure for detecting a wide range of analytes using both GC-MS and 1H-NMR analysis to enhance putative biomarker detection. The proposed method will simplify the transport between laboratories and storage of samples, as compared to intact urine samples.


2002 ◽  
Vol 68 (12) ◽  
pp. 6246-6255 ◽  
Author(s):  
D. J. Fairley ◽  
D. R. Boyd ◽  
N. D. Sharma ◽  
C. C. R. Allen ◽  
P. Morgan ◽  
...  

ABSTRACT A novel haloarchaeal strain, Haloarcula sp. strain D1, grew aerobically on 4-hydroxybenzoic acid (4HBA) as a sole carbon and energy source and is the first member of the domain Archaea reported to do so. Unusually, D1 metabolized 4HBA via gentisic acid rather than via protocatechuic acid, hydroquinone, or catechol. Gentisate was detected in 4HBA-grown cultures, and gentisate 1,2-dioxygenase activity was induced in 4HBA-grown cells. Stoichiometric accumulation of gentisate from 4HBA was demonstrated in 4HBA-grown cell suspensions containing 2,2′-dipyridyl (which strongly inhibits gentisate 1,2-dioxygenase). To establish whether initial 1-hydroxylation of 4HBA with concomitant 1,2-carboxyl group migration to yield gentisate occurred, 2,6-dideutero-4HBA was synthesized and used as a substrate. Deuterated gentisate was recovered from cell suspensions and identified as 3-deutero-gentisate, using gas chromatography-mass spectrometry and proton nuclear magnetic resonance spectroscopy. This structural isomer would be expected only if a 1,2-carboxyl group migration had taken place, and it provides compelling evidence that the 4HBA pathway in Haloarcula sp. strain D1 involves a hydroxylation-induced intramolecular migration. To our knowledge, this is the first report of a pathway which involves such a transformation (called an NIH shift) in the domain Archaea.


2017 ◽  
Vol 36 (10) ◽  
pp. 955-962 ◽  
Author(s):  
Khezrollah Khezri ◽  
Yousef Fazli

AbstractHydrophilic silica aerogel nanoparticles surface was modified with hexamethyldisilazane. Then, the resultant modified nanoparticles were used in random copolymerization of styrene and butyl acrylate via activators generated by electron transfer for atom transfer radical polymerization. Conversion and molecular weight determinations were performed using gas and size exclusion chromatography respectively. Addition of modified nanoparticles by 3 wt% results in a decrease of conversion from 68 to 46 %. Molecular weight of copolymer chains decreases from 12,500 to 7,500 g.mol–1 by addition of 3 wt% modified nanoparticles; however, PDI values increase from 1.1 to 1.4. Proton nuclear magnetic resonance spectroscopy results indicate that the molar ratio of each monomer in the copolymer chains is approximately similar to the initial selected mole ratio of them. Increasing thermal stability of the nanocomposites is demonstrated by thermal gravimetric analysis. Differential scanning calorimetry also shows a decrease in glass transition temperature by increasing modified silica aerogel nanoparticles.


Metabolites ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 178
Author(s):  
Jennifer Ose ◽  
Biljana Gigic ◽  
Tengda Lin ◽  
David B. Liesenfeld ◽  
Jürgen Böhm ◽  
...  

Cachexia is a multifactorial syndrome that is characterized by loss of skeletal muscle mass in cancer patients. The biological pathways involved remain poorly characterized. Here, we compare urinary metabolic profiles in newly diagnosed colorectal cancer patients (stage I–IV) from the ColoCare Study in Heidelberg, Germany. Patients were classified as cachectic (n = 16), pre-cachectic (n = 13), or non-cachectic (n = 23) based on standard criteria on weight loss over time at two time points. Urine samples were collected pre-surgery, and 6 and 12 months thereafter. Fat and muscle mass area were assessed utilizing computed tomography scans at the time of surgery. N = 152 compounds were detected using untargeted metabolomics with gas chromatography–mass spectrometry and n = 154 features with proton nuclear magnetic resonance spectroscopy. Thirty-four metabolites were overlapping across platforms. We calculated differences across groups and performed discriminant and overrepresentation enrichment analysis. We observed a trend for 32 compounds that were nominally significantly different across groups, although not statistically significant after adjustment for multiple testing. Nineteen compounds could be identified, including acetone, hydroquinone, and glycine. Comparing cachectic to non-cachectic patients, higher levels of metabolites such as acetone (Fold change (FC) = 3.17; p = 0.02) and arginine (FC = 0.33; p = 0.04) were observed. The two top pathways identified were glycerol phosphate shuttle metabolism and glycine and serine metabolism pathways. Larger subsequent studies are needed to replicate and validate these results.


Author(s):  
Benedikt Slavik ◽  
Simon Roehrer ◽  
Helene M. Loos ◽  
Mirjana Minceva ◽  
Andrea Buettner

AbstractThe (semi)volatile fraction of Matricaria chamomilla L., an annual herbal plant from the family of Asteraceae, contains high quantities of sesquiterpenes and sesquiterpenoids. A method was developed to achieve isolation and separation of these compounds, using a combination of solvent assisted flavor evaporation (SAFE) and solid support-free liquid-liquid chromatography. The biphasic liquid solvent system n-heptane/ethyl acetate/methanol/water, 5/2/5/2 v/v/v/v (Arizona S) was elaborated as a suitable solvent system for the simultaneous separation of the target compounds. The lab-scale liquid-liquid chromatography separation performed in a countercurrent chromatography (CCC) column was successfully transferred to a semi-preparative centrifugal partition chromatography (CPC) column, which enabled the isolation of artemisia ketone, artemisia alcohol, α-bisabolone oxide A, and (E)-en-yn-dicycloether. α-Bisabolol oxide A and (Z)-en-yn-dicycloether co-eluted, but were successfully separated by subsequent size-exclusion chromatography (SEC). Similarly, spathulenol and α-bisabolol oxide B were obtained as a mixture, and were separated by means of column chromatography using silica gel as stationary phase. The isolated compounds were characterized by means of nuclear magnetic resonance spectroscopy (NMR) and gas chromatography–mass spectrometry (GC-MS). Graphical abstract


2019 ◽  
pp. 152808371986744
Author(s):  
Misbah ◽  
Ijaz Ahmad Bhatti ◽  
Khalid Mahmood Zia ◽  
Haq Nawaz Bhatti ◽  
Muhammad Shahid

In the present project sodium alginate-based polyurethane dispersions were synthesized by two shot processes, using isophorone diisocyanate, polyethylene glycol (Mn-300), dimethylol propionic acid as internal emulsifier along with other reagents including triethylamine and dibutyltindilaurate catalyst. Molecular characterization was performed by Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy. Physical properties were observed and samples were found to be translucent yellow with a stability of more than one year. Biological properties such as blood hemolytic and antibacterial action were also noted in order to check if the samples can be used inside human body for bandage coatings. Synthesized dispersions were found to have considerable blood hemolytic activity and good antibacterial activity. After the complete characterization, dispersions were applied on polycotton blend fabric (50/50). After the treatment, fabric was analyzed for its tear strength, tensile strength pilling resistance and morphological properties by scanning electron microscopy. Fabric treated with polyurethane dispersions has decreased tear strength, enhanced tensile strength, improved pilling resistance and more intact appearance as compared to the untreated fabric.


2002 ◽  
Vol 716 ◽  
Author(s):  
C. Xu ◽  
A. S. Borovik ◽  
Z. Wang ◽  
J. Arno ◽  
T. H. Baum

AbstractChemical studies on 1,3,5,7-tetramethylcyclotetrasiloxane (TMCTS) were conducted to elucidate its thermal behaviors with water and under various reaction conditions. TMCTS was heated in the presence of 316L stainless steel and in the presence of water. The heated TMCTS then was evaluated using 1H NMR (proton nuclear magnetic resonance) spectroscopy, GC-MS (gas chromatography-mass spectrometry) as a function of time, temperature and residual water concentration. The thermal degradation kinetics of gas-phase TMCTS were investigated using FTIR (Fourier transform infrared) spectroscopy at elevated temperatures. These initial results indicated that TMCTS degradation rates increased with both temperature and water concentration. This work spawned the development of a “dry” TMCTS that is expected to exhibit enhanced thermal stability relative towards uncontrolled decomposition.


Sign in / Sign up

Export Citation Format

Share Document