scholarly journals Anti-Inflammatory Effects of Mytilus coruscus Polysaccharide on RAW264.7 Cells and DSS-Induced Colitis in Mice

Marine Drugs ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. 468
Author(s):  
Xing-Wei Xiang ◽  
Rui Wang ◽  
Li-Wen Yao ◽  
Yu-Fang Zhou ◽  
Pei-Long Sun ◽  
...  

Considerable literature has been published on polysaccharides, which play a critical role in regulating the pathogenesis of inflammation and immunity. In this essay, the anti-inflammatory effect of Mytilus coruscus polysaccharide (MP) on lipopolysaccharide-stimulated RAW264.7 cells and a dextran sulfate sodium (DSS)-induced ulcerative colitis model in mice was investigated. The results showed that MP effectively promoted the proliferation of RAW264.7 cells, ameliorated the excessive production of inflammatory cytokines (TNF-α, IL-6, and IL-10), and inhibited the activation of the NF-κB signaling pathway. For DSS-induced colitis in mice, MP can improve the clinical symptoms of colitis, inhibit the weight loss of mice, reduce the disease activity index, and have a positive effect on the shortening of the colon caused by DSS, meliorating intestinal barrier integrity and lowering inflammatory cytokines in serum. Moreover, MP makes a notable contribution to the richness and diversity of the intestinal microbial community, and also regulates the structural composition of the intestinal flora. Specifically, mice treated with MP showed a repaired Firmicutes/Bacteroidetes ratio and an increased abundance of some probiotics like Anaerotruncus, Lactobacillus, Desulfovibrio, Alistipe, Odoribacter, and Enterorhabdus in colon. These data suggest that the MP could be a promising dietary candidate for enhancing immunity and protecting against ulcerative colitis.

Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6604
Author(s):  
Ruige Cao ◽  
Xing Wu ◽  
Hui Guo ◽  
Xin Pan ◽  
Rong Huang ◽  
...  

Naringin is a kind of multi-source food additive which has been explored broadly for its various biological activities and therapeutic potential. In the present study, the protective effect and mechanism of naringin on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice were investigated. The results showed that naringin significantly alleviated DSS-induced colitis symptoms, including disease activity index (DAI), colon length shortening, and colon pathological damage. The tissue and serum secretion of inflammatory cytokines, as well as the oxidative stress, were decreased accordingly upon naringin intervention. Naringin also decreased the proteins involved in inflammation and increased the expression of tight junction (TJ) proteins. Moreover, naringin increased the relative abundance of Firmicutes/Bacteroides and reduced the content of Proteobacteria to improve the intestinal flora disorder caused by DSS, which promotes the intestinal health of mice. It was concluded that naringin can significantly ameliorate the pathogenic symptoms of UC through inhibiting inflammatory response and regulating intestinal microbiota, which might be a promising natural therapeutic agent for the dietary treatment of UC and the improvement of intestinal symbiosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zixia Chen ◽  
Long Yi ◽  
Yanni Pan ◽  
Xingyao Long ◽  
Jianfei Mu ◽  
...  

Ulcerative colitis is an inflammatory disease of the intestine caused by many reasons, and it may even develop into colon cancer. Probiotics are normal bacteria that exist in the human body and have been proven to regulate the balance of intestinal flora and alleviate inflammation. The current study aimed to study the effect of Lactobacillus fermentum ZS40 (ZS40) on dextran sulfate sodium (DSS)-induced ulcerative colitis mice. The length and weight of the colon were measured, and the histopathological morphological changes of colon tissue were observed to evaluate the effects of ZS40 on colitis. Biochemical kits, ELISA kits, real-time quantitative PCR (RT-qPCR), and western blot were also used to detect the effects of ZS40 on serum and colon tissue related oxidative indicators and pro-inflammatory and anti-inflammatory cytokines. We found that ZS40 could reduce colonic inflammatory cell infiltration and goblet cell necrosis, increase total superoxide dismutase and catalase in mouse serum, and reduce myeloperoxidase and malondialdehyde levels. ZS40 could down-regulate the level of proinflammatory cytokines and up-regulate the level of anti-inflammatory cytokines. More importantly, ZS40 down-regulated the relative expression of nuclear factor-κB p65 (NF-κBp65), IL-6, and TNF-α mRNA and protein, up-regulated the relative expression of inhibitor kapa B alpha (IκB-α). By regulating the NF-κB and MAPK pathways to down-regulated the relative expression of p38 and JNK1/2 mRNA and p38, p-p38, JNK1/2, and p-JNK1/2 proteins. Our study suggested that ZS40 may serve as a potential therapeutical strategy for ulcerative colitis.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Jain Nam ◽  
Yeeun Park ◽  
Min Seo Kim ◽  
Ji Yeon Kim

Abstract Objectives This study investigated the potential effect of cinnamon extracts on anti-inflammatory action and maintenance of gut barrier integrity in murine colitis, using dextran sulfate sodium (DSS)-induced BALB/c mice. Methods The BALB/c mice were administered either distilled water or three doses of cinnamon extracts for 21 days. To induce intestinal inflammation, 5% DSS was provided as drinking water for the last 7 days. The changes on clinical and histopathological signs, inflammatory cytokines, and tight junction proteins were evaluated in the colon. Swiss roll histology was also performed. Results In contrast to the DSS group, the body weight of the cinnamon extract group was increased, colon shortening was inhibited, and disease activity index (DAI) values and colon injury were lowered. The cinnamon extract group also clearly inhibited the myeloperoxidase (MPO) activity, as well as the inflammatory cytokines and the mRNA concentrations of IL-1β, IL-6, and TNF-α, but not those of the intestinal barrier proteins, zonula occludens (ZO)-1, occludin, E-cadherin, mucin-1, and mucin-2 in colon tissues. Conclusions These results demonstrate the protective effect of cinnamon extracts against intestinal inflammation and suggest that cinnamon could be utilized to prevent and treat inflammatory bowel disease (IBD). Funding Sources This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries(IPET) through High Value-added Food Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs(MAFRA)(Project No. 116,012–3).


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shengchao Zhang ◽  
Jiankai Fang ◽  
Zhanhong Liu ◽  
Pengbo Hou ◽  
Lijuan Cao ◽  
...  

Abstract Background Muscle stem cells (MuSCs) are absolutely required for the formation, repair, and regeneration of skeletal muscle tissue. Increasing evidence demonstrated that tissue stem cells, especially mesenchymal stem cells (MSCs), can exert therapeutic effects on various degenerative and inflammatory disorders based on their immunoregulatory properties. Human mesenchymal stem cells (hMSCs) treated with interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) were reported to possess anti-inflammatory functions by producing TNF-stimulated gene 6 (TSG-6). However, whether human muscle stem cells (hMuSCs) also possess TSG-6 mediated anti-inflammatory functions has not been explored. Methods The ulcerative colitis mouse model was established by subjecting mice to dextran sulfate sodium (DSS) in drinking water for 7 days. hMuSCs were pretreated with IFN-γ and TNF-α for 48 h and were then transplanted intravenously at day 2 of DSS administration. Body weights were monitored daily. Indoleamine 2,3-dioxygenase (IDO) and TSG-6 in hMuSCs were knocked down with short hairpin RNA (shRNA) and small interfering RNA (siRNA), respectively. Colon tissues were collected for length measurement and histopathological examination. The serum level of IL-6 in mice was measured by enzyme-linked immunosorbent assay (ELISA). Real-time PCR and Western blot analysis were performed to evaluate gene expression. Results hMuSCs treated with inflammatory factors significantly ameliorated inflammatory bowel disease (IBD) symptoms. IDO and TSG-6 were greatly upregulated and required for the beneficial effects of hMuSCs on IBD. Mechanistically, the tryptophan metabolites, kynurenine (KYN) or kynurenic acid (KYNA) produced by IDO, augmented the expression of TSG-6 through activating their common receptor aryl hydrocarbon receptor (AHR). Conclusion Inflammatory cytokines-treated hMuSCs can alleviate DSS-induced colitis through IDO-mediated TSG-6 production.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Cristina Sánchez-Quesada ◽  
Alicia López-Biedma ◽  
Estefania Toledo ◽  
José J. Gaforio

Anti-inflammatory effects of virgin olive oil (VOO) have been described recently, along with its wound healing effect. One of the main minor compounds found in VOO is squalene (SQ), which also possesses preventive effects against skin damage and anti-inflammatory properties. The inflammatory response is involved in wound healing and manages the whole process by macrophages, among others, as the main innate cells with a critical role in the promotion and resolution of inflammation for tissue repair. Because of that, this work is claimed to describe the role that squalene exerts in the immunomodulation of M1 proinflammatory macrophages, which are the first cells implicate in recent injuries. Pro- and anti-inflammatory cytokines were analysed using TPH1 cell experimental model. SQ induced an increase in the synthesis of anti-inflammatory cytokines, such as IL-10, IL-13, and IL-4, and a decrease in proinflammatory signals, such as TNF-α and NF-κB in M1 proinflammatory macrophages. Furthermore, SQ enhanced remodelling and repairing signals (TIMP-2) and recruitment signals of eosinophils and neutrophils, responsible for phagocytosis processes. These results suggest that SQ is able to promote wound healing by driving macrophage response in inflammation. Therefore, squalene could be useful at the resolution stage of wound healing.


2020 ◽  
Author(s):  
Jin-hu Chen ◽  
Jian-ting Zhao ◽  
Zheng-yong Yu ◽  
Yi-hao Che ◽  
Yu-jia Wang ◽  
...  

Abstract Background: Mucosal inflammation and ulcer play important roles in the pathogenesis of ulcerative colitis. As as traditional Chinese medicine compound composed of Periplaneta americana and Taraxacum mongolicum, Ento-PB is always prescribed for the treatment of ulcer and inflammatory diseases. As for the significant role of P. americana in terms of promoting mucosal healing, the compatibility of the anti-inflammatory drug T. mongolicum may enable Ento-PB to simultaneously play anti-inflammatory and promote mucosal healing effects on the treatment of UC. Therefore, this study aimed to evaluate the therapeutic potential and possible mechanism of Ento-PB for UC by establishing an acetic acid-induced colitis model in dogs.Methods: Preliminary identification to the chemical components of compound Ento-PB was carried out through high performance liquid chromatography. A cross-bred dogs model of acetic acid-induced ulcerative colitis was established to evaluate the efficacy of compound Ento-PB. The expression levels of inflammatory cytokines C-reactive protein (CRP), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-10 (IL-10) in plasma were measured by carrying out enzyme-linked immunosorbent assay (ELISA).Results: With the extension of treatment time, Ento-PB could effectively improve clinical symptoms of UC cross-bred dogs. Colonoscopy displayed that mucosal redness, swelling and congestion decreased gradually, and obviously repaired after mucosal injury. The intestinal texture was gradually clear, and the colonoscopy score gradually reduced. Histopathological examination revealed that the structure of colon was restored significantly, the infiltration of inflammatory cells was reduced, and the histological score was remarkably reduced. At the same time, the results of dynamic monitoring of inflammatory cytokines in plasma proved that Ento-PB can gradually down-regulate the activity of CRP, iNOS and COX-2, reduce the expression levels of inflammatory cytokines TNF-α and IL-1β, and gradually restore anti-inflammatory and the expression level of cytokine IL-10.Conclusions: Ento-PB reduces the level of pro-inflammatory cytokines in a dose- and time-dependent manner and inflammation, improves colon tissue lesions and the repair of intestinal mucosa after injury, and effectively increases acetic acid-induced colon inflammation in UC cross-bred dogs.


Planta Medica ◽  
2021 ◽  
Author(s):  
Jiaqi Wu ◽  
Yuzheng Wu ◽  
Yue Chen ◽  
Mengyang Liu ◽  
Haiyang Yu ◽  
...  

AbstractUlcerative colitis has been recognized as a chronic inflammatory disease predominantly disturbing the colon and rectum. Clinically, the aminosalicylates, steroids, immunosuppressants, and biological drugs are generally used for the treatment of ulcerative colitis at different stages of disease progression. However, the therapeutic efficacy of these drugs does not satisfy the patients due to the frequent drug resistance. Herein, we reported the anti-ulcerative colitis activity of desmethylbellidifolin, a xanthone isolated from Gentianella acuta, in dextran sulfate sodium-induced colitis in mice. C57BL/6 mice were treated with 2% dextran sulfate sodium in drinking water to induce acute colitis. Desmethylbellidifolin or balsalazide sodium was orally administrated once a day. Biological samples were collected for immunohistological analysis, intestinal barrier function evaluation, cytokine measurement, and gut microbiota analysis. The results revealed that desmethylbellidifolin alleviated colon shortening and body weight loss in dextran sulfate sodium-induced mice. The disease activity index was also lowered by desmethylbellidifolin after 9 days of treatment. Furthermore, desmethylbellidifolin remarkably ameliorated colonic inflammation through suppressing the expression of interleukin-6 and tumor necrosis factor-α. The intestinal epithelial barrier was strengthened by desmethylbellidifolin through increasing levels of occludin, ZO-1, and claudins. In addition, desmethylbellidifolin modulated the gut dysbiosis induced by dextran sulfate sodium. These findings suggested that desmethylbellidifolin effectively improved experimental ulcerative colitis, at least partly, through maintaining intestinal barrier integrity, inhibiting proinflammatory cytokines, and modulating dysregulated gut microbiota.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Huixia Qiao ◽  
Yahui Huang ◽  
Xiaoyan Chen ◽  
Long Yang ◽  
Yue Wang ◽  
...  

Purpose. Jiaweishaoyao decoction (JWSYD) is a traditional prescription of Chinese medicine that is initially used for the treatment of diarrhea. This study is aimed at investigating the effects of JWSYD on DSS-induced ulcerative colitis (UC). Methods. DSS-induced UC mice and LPS-induced RAW264.7 cells were used as the UC model in vivo and in vitro. UC was assessed by body weight, disease activity index (DAI), colon length, spleen weight, and histopathological score (HE staining). The levels of TNF-α, IL-1β, and IL-6 were analyzed by ELISA and qRT-PCR. The levels of NLRP3 inflammasome- and NF-κB pathway-associated proteins were measured by western blot. Results. JWSYD alleviated DSS-induced UC in respect to body weight, DAI, colon length, spleen weight, and histopathological score. JWSYD reduced the levels of TNF-α, IL-1β, and IL-6 in DSS-induced UC mice and the supernatants of LPS-induced RAW264.7 cells. JWSYD suppressed the protein levels of inflammasome-associated proteins, including NLRP3, ASC1, Procaspase-1, Cleaved caspase-1, and Cleaved IL-1β in DSS-induced UC mice and LPS-induced RAW264.7 cells. In addition, JWSYD suppressed the NF-κB pathway in vitro and in vivo. Conclusion. JWSYD alleviated DSS-induced UC via inhibiting the NLRP3 inflammasome and NF-κB pathway.


2020 ◽  
Vol 8 (11) ◽  
pp. 1650
Author(s):  
Jin-Shuang Hu ◽  
Yan-Yan Huang ◽  
Jia-Hua Kuang ◽  
Jia-Jia Yu ◽  
Qin-Yu Zhou ◽  
...  

Antibiotic-associated diarrhea (AAD) is the most common side effect of antibiotics and is routinely treated with probiotics in clinical. Streptococcus thermophiles, extensively utilized for producing dairy foods, has recently been regarded as a new promising probiotic candidate. In this study, the efficacy of Streptococcus thermophiles DMST-H2 (DMST-H2) for AAD treatment in mice was investigated. DMST-H2 was isolated from Chinese traditional yogurt, proved to be non-toxic, and presented tolerance against simulated gastrointestinal conditions in vitro. Additionally, genomic analysis revealed that it possessed genes related to acid tolerance, bile salt tolerance, adhesion, oxidative stress and bacteriocin production. The animal experiment results showed that both DMST-H2 treatment and natural recovery could reduce fecal water content. Compared with spontaneous recovery, DMST-H2 accelerated the recovery of the enlarged caecum and intestinal barrier injury from AAD, and further decreased endotoxin (ET), D-lactate (D-LA) and diamine oxidase (DAO) content in serum. Moreover, pro-inflammatory cytokines (TNF-α) were reduced, while interferon-γ (IFN-γ) and anti-inflammatory cytokines (IL-10) increased after treating with DMST-H2. Furthermore, DMST-H2 better restored the structure of intestinal flora. At the phylum level, Firmicutes increased and Proteobacteria decreased. These findings indicate that DMST-H2 could promote recovery in mice with antibiotic-associated diarrhea.


Sign in / Sign up

Export Citation Format

Share Document