scholarly journals Astaxanthin Provides Antioxidant Protection in LPS-Induced Dendritic Cells for Inflammatory Control

Marine Drugs ◽  
2021 ◽  
Vol 19 (10) ◽  
pp. 534
Author(s):  
Yinyan Yin ◽  
Nuo Xu ◽  
Tao Qin ◽  
Bangyue Zhou ◽  
Yi Shi ◽  
...  

Astaxanthin, originating from marine organisms, is a natural bioactive compound with powerful antioxidant activity. Here, we evaluated the antioxidant ability of astaxanthin on dendritic cells (DCs), a key target of immune regulation, for inflammatory control in a sepsis model. Our results showed that astaxanthin suppressed nitric oxide (NO) production, reactive oxygen species (ROS) production, and lipid peroxidation activities in LPS-induced DCs and LPS-challenged mice. Moreover, the reduced glutathione (GSH) levels and the GSH/GSSG ratio were increased, suggesting that astaxanthin elevated the level of cellular reductive status. Meanwhile, the activities of antioxidant enzymes, including glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD), were significantly upregulated. Astaxanthin also inhibited the LPS-induced secretions of IL-1β, IL-17, and TGF-β cytokines. Finally, we found that the expressions of heme oxygenase 1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) were significantly upregulated by astaxanthin in LPS-induced DCs, suggesting that the HO-1/Nrf2 pathway plays a significant role in the suppression of oxidative stress. These results suggested that astaxanthin possesses strong antioxidant characteristics in DC-related inflammatory responses, which is expected to have potential as a method of sepsis treatment.

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9720
Author(s):  
Wen-Tao Zhou ◽  
Li-Bin Wang ◽  
Hao Yu ◽  
Kai-Kai Zhang ◽  
Li-Jian Chen ◽  
...  

Polychlorinated biphenyls (PCBs), particularly low chlorinated congeners in our environment, can induce human hepatotoxicity. However, the mechanisms by which PCBs cause hepatotoxicity remain elusive. Moreover, there are no effective treatments for this condition. In this study, 40 μM PCB52 was administered to rat (Brl-3A) and human hepatocytes (L-02) for 48 h following the N-acetylcysteine (NAC)/saline pretreatment. A significant decrease in cell viability was observed in PCB52-treated cells relative to the control. Besides, PCB52 significantly increased reactive oxygen species (ROS) levels and malondialdehyde (MDA) contents, suggesting induction of oxidative stress. The expression of Traf6, MyD88, and Tnf in Brl-3A cells and that of MYD88, TNF, and IL1B in L-02 cells were significantly upregulated by PCB52. Consistently, overexpression of TLR4, MyD88, Traf6, and NF-κB p65 proteins was observed in PCB52-treated cells, indicating activation of inflammatory responses. Nevertheless, no changes in kelch-like ECH-associated protein 1 (keap1), nuclear factor-erythroid 2-related factor (nrf2), and heme oxygenase-1 proteins were observed in PCB52-treated cells, indicating non-activation of the keap1/nrf2 pathway. Pretreatment with NAC significantly ameliorated PCB52 effects on cell viability, ROS levels, MDA contents and expression of inflammatory elements at both RNA and protein levels. However, no changes in keap1, nrf2 and HO-1 protein levels were detected following NAC pretreatment. Taken together, with non-activated keap1/nrf2 pathway, PCB52-induced oxidative stress and inflammatory responses could be responsible for its hepatotoxicity. These effects were effectively attenuated by NAC pretreatment, which scavenges ROS and dampens inflammatory responses. This study might provide novel strategies for the treatment of the PCBs-associated hepatotoxic effects.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3317 ◽  
Author(s):  
Li-Yu Wang ◽  
Chin-Shiu Huang ◽  
Yu-Hsuan Chen ◽  
Chin-Chu Chen ◽  
Chien-Chih Chen ◽  
...  

Previous studies have revealed the anti-inflammatory and neuroprotective properties of Hericium erinaceus extracts, including the fact that the active ingredient erinacine C (EC) can induce the synthesis of nerve growth factor. However, there is limited research on the use and mechanisms of action of EC in treating neuroinflammation. Hence, in this study, the inflammatory responses of human BV2 microglial cells induced by LPS were used to establish a model to assess the anti-neuroinflammatory efficacy of EC and to clarify its possible mechanisms of action. The results showed that EC was able to reduce the levels of nitric oxide (NO), interleukin-6 (IL-6), tumor necrosis factor (TNF)-α, and inducible nitric oxide synthase (iNOS) proteins produced by LPS-induced BV2 cells, in addition to inhibiting the expression of NF-κB and phosphorylation of IκBα (p-IκBα) proteins. Moreover, EC was found to inhibit the Kelch-like ECH-associated protein 1 (Keap1) protein, and to enhance the nuclear transcription factor erythroid 2-related factor (Nrf2) and the expression of the heme oxygenase-1 (HO-1) protein. Taken together, these data suggest that the mechanism of action of EC involves the inhibition of IκB, p-IκBα, and iNOS expressions and the activation of the Nrf2/HO-1 pathway.


2020 ◽  
Vol 19 (2) ◽  
pp. 133-138
Author(s):  
Wenyu Chen ◽  
Hui He

Trilobatin is a natural plant-derived glycosylated flavonoid that has been shown to exhibit multiple beneficial pharmacologic activities including protection of heart against H/R-induced cardiomyocyte injury. However, the molecular mechanisms underlying protection from H/R-induced cardiomyocyte injury remain unknown. Using H9C2 cells as a model, we examined the effect of trilobatin on H/R-induced cellular injury, apoptosis, and generation of reactive oxygen species. The results showed that trilobatin protected H9C2 cells not only from cell death and apoptosis, but also counteracted H/R-induced changes in malondialdehyde, superoxide dismutase, glutathione, and glutathione peroxidase. The evaluation of the mechanism underlying the effect of trilobatin on protection from H/R-induced cellular injury suggested changes in the regulation of nuclear factor erythroid 2-related factor 2/heme oxygenase-1 pathway.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3394 ◽  
Author(s):  
Seon Min Lee ◽  
Na-Hyun Kim ◽  
Sangbum Lee ◽  
Yun Na Kim ◽  
Jeong-Doo Heo ◽  
...  

Crohn’s disease (CD) and ulcerative colitis (UC), collectively referred to as inflammatory bowel disease (IBD), are autoimmune diseases characterized by chronic inflammation within the gastrointestinal tract. Debromohymenialdisine is an active pyrrole alkaloid that is well known to serve as a stable and effective inhibitor of Chk2. In the present study, we attempted to investigate the anti-inflammatory properties of (10Z)-debromohymenialdisine (1) isolated from marine sponge Stylissa species using an intestinal in vitro model with a transwell co-culture system. The treatment with 1 attenuated the production and gene expression of lipopolysaccharide (LPS)-induced Interleukin (IL)-6, IL-1β, prostaglandin E2 (PGE2), and tumor necrosis factor-α in co-cultured THP-1 macrophages at a concentration range of 1–5 μM. The protein expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 were down-regulated in response to the inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) translocation into the nucleus in cells. In addition, we observed that 1 markedly promoted the nuclear translocation of nuclear factor erythroid 2 related factor 2 (Nrf2) and subsequent increase of heme oxygenase-1 (HO-1) expression. These findings suggest the potential use of 1 as a pharmaceutical lead in the treatment of inflammation-related diseases including IBD.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Dong-Woo Lim ◽  
Hee-Jin Choi ◽  
Sun-Dong Park ◽  
Hyuck Kim ◽  
Ga-Ram Yu ◽  
...  

Despite its deleterious effects on living cells, oxidative stress plays essential roles in normal physiological processes and provides signaling molecules for cell growth, differentiation, and inflammation. Macrophages are equipped with antioxidant mechanisms to cope with intracellular ROS produced during immune response, and Nrf2 (NF-E2-related factor 2)/HO-1 (heme oxygenase-1) pathway is an attractive target due to its protective effect against ROS-induced cell damage in inflamed macrophages. We investigated the effects of ethanol extract of A. villosum (AVEE) on lipopolysaccharide- (LPS-) stimulated inflammatory responses generated via the Nrf2/HO-1 signaling pathway in murine peritoneal macrophages and RAW 264.7 cells. AVEE was found to suppress the NF-κB signaling pathway, thus, to reduce proinflammatory cytokine, nitric oxide, and prostaglandin levels in peritoneal macrophages and Raw 264.7 cells treated with LPS, and to enhance HO-1 expression by activating Nrf2 signaling. Furthermore, these anti-inflammatory effects of AVEE were diminished when cells were pretreated with SnPP (a HO-1 inhibitor). HPLC analysis revealed AVEE contained quercetin, a possible activator of the Nrf2/HO-1 pathway. These results show A. villosum ethanol extract exerts anti-inflammatory effects by activating the Nrf2/HO-1 pathway in LPS-stimulated macrophages.


2020 ◽  
Vol 33 (7) ◽  
pp. 610-619 ◽  
Author(s):  
Peijian Wang ◽  
Yi Yang ◽  
Dan Wang ◽  
Qiyuan Yang ◽  
Jindong Wan ◽  
...  

Abstract BACKGROUND Oxidative stress is known to be associated with the development of diabetes. Cinnamaldehyde (CA) is a spice compound in cinnamon that enhances the antioxidant defense against reactive oxygen species (ROS) by activating nuclear factor erythroid-related factor 2 (Nrf2), which has been shown to have a cardioprotection effect. However, the relationship between CA and Nrf2 in diabetic vascular complications remains unclear. METHODS Leptin receptor-deficient (db/db) mice were fed normal chow or diet containing 0.02% CA for 12 weeks. The vascular tone, blood pressure, superoxide level, nitric oxide (NO) production, renal morphology, and function were measured in each group. RESULTS CA remarkably inhibited ROS generation, preserved NO production, increased phosphorylated endothelial nitric oxide synthase (p-eNOS), attenuated the upregulation of nitrotyrosine, P22 and P47 in aortas of db/db mice, and apparently ameliorated the elevation of type IV collagen, TGF-β1, P22, and P47 in kidney of db/db mice. Feeding with CA improved endothelium-dependent relaxation of aortas and mesenteric arteries, and alleviated the remodeling of mesenteric arteries in db/db mice. Additionally, dietary CA ameliorated glomerular fibrosis and renal dysfunction in diabetic mice. Nrf2 and its targeted genes heme oxygenase-1 (HO-1) and quinone oxidoreductase-1 (NQO-1) were slightly increased in db/db mice and further upregulated by CA. However, these protective effects of CA were reversed in Nrf2 downregulation mice. CONCLUSIONS A prolonged diet of CA protects against diabetic vascular dysfunction by inhibiting oxidative stress through activating of Nrf2 signaling pathway in db/db mice.


2021 ◽  
Vol 11 (24) ◽  
pp. 11715
Author(s):  
Se-Yun Cheon ◽  
Hyun-Ae Kang ◽  
Bo-Ram Jin ◽  
Hyo-Jung Kim ◽  
Yea-Jin Park ◽  
...  

The genus Epilobium consists of approximately 200 species that are distributed worldwide. Some of these herbs have been used for the treatment of diarrhea, infection, irritation, and other disorders associated with inflammation. Unlike that of other Epilobium species, there is little scientific understanding of the pharmacological effect of Epilobium amurense subsp. cephalostigma (Hausskn.) C. J. Chen, Hoch & P. H. Raven. In this study, we demonstrated the anti-inflammatory and antioxidative properties of an E. amurense 95% ethanol extract (EACEE) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, and observed the underlying mechanism of this effect. We measured the productions of nitric oxide (NO) and reactive oxygen species, and examined the actions of EACEE on transcription factors in the macrophages. EACEE reduced NO production and inducible nitric oxide synthase protein levels via the inhibition of the nuclear factor (NF)-κB pathway. Additionally, EACEE suppressed redundant reactive oxygen species production and regulated nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) signaling. Furthermore, EACEE significantly inhibited the phosphorylation of p38 mitogen-activated protein kinase (MAPK). Overall, these results indicate that EACEE exerts anti-inflammatory and antioxidant effects via the activation of Nrf2/HO-1 and inhibition of NF-κB/p38 MAPK signaling.


2019 ◽  
Vol 47 (07) ◽  
pp. 1611-1626 ◽  
Author(s):  
Wei-Hsiu Liu ◽  
Li-Shian Shi ◽  
Min-Chieh Chung ◽  
Tsu-Chung Chang ◽  
Shih-Yu Lee

The medicinal mushroom Antrodia cinnamomea has been demonstrated to have anti-inflammatory properties. However, the bioactive compounds in A. cinnamomea need further investigation. The present study aimed to understand the mechanism of action of antcamphin M, an ergostanoid isolated from A. cinnamomea mycelium and to clarify its underlying mechanisms of action. RAW264.7 cells were pretreated with the indicated concentrations of antcamphin M, prior to stimulation with lipopolysaccharide (LPS). Cell viability, production of nitric oxide (NO), prostaglandin E2 (PGE[Formula: see text], cytokines, and chemokines, as well as the inflammation-related signaling pathways were investigated. The study revealed that antcamphin M significantly decreased the LPS-induced production of NO, PGE2, pro-inflammatory cytokines, and keratinocyte chemoattractant CXCL1 (KC), along with the levels of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins without significant cytotoxicity, indicating it had a better anti-inflammatory activity than that of gisenoside Rb1 and Rg1. Additionally, antcamphin M significantly inhibited the activation of MAPKs (p38, ERK, and JNK), NF[Formula: see text]B, and components of the NLRP3 inflammasome (NLRP3, ASC, and caspase-1) signaling pathways and also increased the levels of nuclear factor erythroid-2-related factor (Nrf2) and heme oxygenase-1 (HO-1). These findings suggest that antcamphin M possesses potent anti-inflammatory activities and could be a potential candidate for the development of anti-inflammatory drugs.


2019 ◽  
Vol 20 (4) ◽  
pp. 932 ◽  
Author(s):  
Grace Sun ◽  
Runting Li ◽  
Bo Yang ◽  
Kevin Fritsche ◽  
David Beversdorf ◽  
...  

High levels of docosahexaenoic acid (DHA) in the phospholipids of mammalian brain have generated increasing interest in the search for its role in regulating brain functions. Recent studies have provided evidence for enhanced protective effects when DHA is administered in combination with phytochemicals, such as quercetin. DHA and quercetin can individually suppress lipopolysaccharide (LPS)–induced oxidative/inflammatory responses and enhance the antioxidative stress pathway involving nuclear factor erythroid-2 related factor 2 (Nrf2). However, studies with BV-2 microglial cells indicated rather high concentrations of DHA (IC50 in the range of 60–80 µM) were needed to produce protective effects. To determine whether quercetin combined with DHA can lower the levels of DHA needed to produce protective effects in these cells is the goal for this study. Results showed that low concentrations of quercetin (2.5 µM), in combination with DHA (10 µM), could more effectively enhance the expression of Nrf2 and heme oxygenase 1 (HO-1), and suppress LPS–induced nitric oxide, tumor necrosis factor-α, phospho-cytosolic phospholipase A2, reactive oxygen species, and 4-hydroxynonenal, as compared to the same levels of DHA or quercetin alone. These results provide evidence for the beneficial effects of quercetin in combination with DHA, and further suggest their potential as nutraceuticals for improving health.


Sign in / Sign up

Export Citation Format

Share Document