scholarly journals Actinomycin X2, an Antimicrobial Depsipeptide from Marine-Derived Streptomyces cyaneofuscatus Applied as a Good Natural Dye for Silk Fabric

Marine Drugs ◽  
2021 ◽  
Vol 20 (1) ◽  
pp. 16
Author(s):  
Wei Chen ◽  
Kaixiong Ye ◽  
Xiaoji Zhu ◽  
Huihui Zhang ◽  
Ranran Si ◽  
...  

Actinomycins as clinical medicine have been extensively studied, while few investigations were conducted to discover the feasibility of actinomycins as antimicrobial natural dye contributing to the medical value of the functional fabrics. This study was focused on the application of actinomycin X2 (Ac.X2), a peptide pigment cultured from marine-derived Streptomyces cyaneofuscatus, in the dyeing and finishing of silk fabric. The dyeing potential of Ac.X2 with silk vs. cotton fabrics was assessed. As a result, the silk fabric exhibited greater uptake and color fastness with Ac.X2. Through Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) analyses, some changes of chemical property for the dyed fabric and Ac.X2 were studied. The silk fabric dyed with Ac.X2 exhibited good UV protection ability. The antibacterial properties of dyed and finished silk were also evaluated, which exhibited over 90% antibacterial activity even after 20 washing cycles. In addition, the brine shrimp assay was conducted to evaluate the general toxicity of the tested fabric, and the results indicated that the dyed silk fabrics had a good biological safety property.

2021 ◽  
Author(s):  
Fatemeh Shateran ◽  
Mohammad Ali Ghasemzadeh

Abstract Metal-organic frameworks (MOFs) are developing as a powerful platform for the delivery and controlled release of drugs. In this study, we reported a novel magnetic framework including MgFe2O4@MIL-53(Al) for the delivery of tetracycline (TC) antibiotic. The obtained results of this research showed that 88% of the TC was loaded on the MgFe2O4@MIL-53(Al). The drug release study was performed in pH: 7.4 and pH: 5.0 which showed 75% and 83% release within 3 days. Moreover, antibacterial activities tests based on well agar diffusion were performed against Staphylococcus aureus and Escherichia coli bacteria which exhibited satisfactory antibacterial properties of TC-loaded MgFe2O4@MIL-53(Al). Moreover, the prepared structures including MgFe2O4@MIL-53(Al) and MgFe2O4@MIL-53(Al)/TC were identified using Fourier-transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Scanning electron microscope (SEM) and thermal gravimetric analysis (TGA).


Author(s):  
T. Hemalatha ◽  
S. Akilandeswari

Pure CuO nanoparticles and chemically-precipitated Poly Ethylene Glycol (PEG) used as a capping agent CuO nanocrystal continuum (0.1, 0.2, 0.3, 0.4, 0.5 gm) was anatomized for structural and morphological research using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and Field - Emission Scanning Electron Microscopy (FE-SEM). Their X-ray Diffraction (XRD) analysis manifested monoclinic crystallinity in pure and PEG-capped CuO nanorods, with an average crystallite size of 21.63nm and 13-16nm respectively. The morphological analysis revealed their structural conformation. The FT-IR spectrum affirmed the presence of Cu-O bonds. The optical property of the aforesaid nanorods was studied by UV-Visible reflectance (UV-Vis DRS). The UV analysis showed that all the capped products show signs of good optical quality in the UV region and also the absorption edge was blue shifted with a band gap of 1.85 eV for 0.4gm PEG capped as results of quantum confinement effect. The antibacterial properties of the as-prepared nanostructures investigated for various human pathogens using disc diffusion method. The result showed the significant antibacterial activity bothgram positiveandgram negativebacteria.


2022 ◽  
Vol 8 ◽  
Author(s):  
Yashan Feng ◽  
Lei Chang ◽  
Shijie Zhu ◽  
Yongxin Yang ◽  
Baoli Wei ◽  
...  

The uncontrollable rapid degradation rate of the Mg alloy substrate limited its clinical application, and implant-associated infections have been reported to be the main reason for the secondary surgery of orthopedic implantation. The aim of this study was to produce a multifunctional coating on magnesium-based alloys that have improved corrosion resistance, bioactivity, and antibacterial properties through the preparation of polyelectrolytic multilayers (PEMs) consisting of chitosan (CS) and sodium hyaluronate (HA) on silane-modified strontium-substituted hydroxyapatite (hereafter referred to as Bil (SH + CS)/SrHA). The multifunctional coatings were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The results showed the polyelectrolyte complex SH/CS layer to be uniformly and tightly attached on to the surface of silane-treated SrHA. At the same time, a potentiodynamic polarization test and hydrogen evolution test showed the Bil (SH + CS)/SrHA coatings to exhibit superior corrosion resistance than bulk Mg-based alloys. The results of the cell–surface interactions revealed Bil (SH + CS)/SrHA coatings to be in favor of cell initial adhesion and more beneficial to the proliferation and growth of cells with the processing of co-culture. In addition, antibacterial tests demonstrated the strong bactericidal effect of Bil (SH + CS)/SrHA coatings against both Escherichia coli (E. coli) and Staphylococcus (S. aureus), suggesting that Bil (SH + CS)/SrHA coatings can successfully achieve multifunctionality with enhanced corrosion resistance, biocompatibility, and antibacterial properties.


2017 ◽  
Vol 88 (8) ◽  
pp. 873-881 ◽  
Author(s):  
Hanfang Feng ◽  
Yanfan Wu ◽  
Xuemei Feng ◽  
Ling Zhong ◽  
Fengxiu Zhang ◽  
...  

A new formaldehyde-free reagent based on acrylamide and glyoxal was synthesized to improve the elasticity, stiffness, and weight gain of silk fabric. The finishing process could be completed rapidly in 20 seconds. The results showed that the elasticity, stiffness, and weight gain of silk fabric were efficiently improved. The stiffness was improved from 0.03 to 0.88 N·m, the delayed crease recovery angle was increased from 240° to 288.6°, and the weight gain could reach 18.1%. The finished silk fabrics were durable. The breaking strength and tear strength were substantially increased, and the whiteness of the silk was well maintained. Scanning electron microscopy revealed that the surface of the finished silk remained smooth. Fourier transform infrared spectroscopic analysis indicated the finishing reagent reacted on the silk, and X-ray diffraction analysis indicated that a new crystalline phase formed during the finishing process.


2009 ◽  
Vol 79-82 ◽  
pp. 211-214
Author(s):  
Wei Xiang ◽  
Zai Sheng Cai

The silk fabric was chemically modified with 3-(trimethoxysilyl) propyl dodecyl dimethyl ammonium chloride (HSQA), a cationic modifying agent, to promote antibacterial property against S. aureus and E. coli. The dyeing and colorfastness properties of modified fabrics with commercial synthetic dyes, that is, acid and reactive dyes were also improved. The modified silk fabrics also exhibited some improved resiliency. Therefore, the wear properties of fabrics were expected to be improved by the technique of modification. However, the modification caused a slight decrease in the tensile strength of silk fabrics, as well as the whiteness and wettability because of introducing hydrophobic siloxane chains into amorphous regions of silk fibroin. The surface structure of modified silk fiber was studied by X-ray photoelectron spectra (XPS) and FT-IR spectra. Key words: Silk fabric; multiple-function; Wear property; antibacterial property; X-ray photoelectron spectrum; FT-IR spectrum


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1085
Author(s):  
Patricia Castaño-Rivera ◽  
Isabel Calle-Holguín ◽  
Johanna Castaño ◽  
Gustavo Cabrera-Barjas ◽  
Karen Galvez-Garrido ◽  
...  

Organoclay nanoparticles (Cloisite® C10A, Cloisite® C15) and their combination with carbon black (N330) were studied as fillers in chloroprene/natural/butadiene rubber blends to prepare nanocomposites. The effect of filler type and load on the physical mechanical properties of nanocomposites was determined and correlated with its structure, compatibility and cure properties using Fourier Transformed Infrared (FT-IR), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and rheometric analysis. Physical mechanical properties were improved by organoclays at 5–7 phr. Nanocomposites with organoclays exhibited a remarkable increase up to 46% in abrasion resistance. The improvement in properties was attributed to good organoclay dispersion in the rubber matrix and to the compatibility between them and the chloroprene rubber. Carbon black at a 40 phr load was not the optimal concentration to interact with organoclays. The present study confirmed that organoclays can be a reinforcing filler for high performance applications in rubber nanocomposites.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1885
Author(s):  
Xinyu Wu ◽  
Feng Yang ◽  
Jian Gan ◽  
Zhangqian Kong ◽  
Yan Wu

The silver particles were grown in situ on the surface of wood by the silver mirror method and modified with stearic acid to acquire a surface with superhydrophobic and antibacterial properties. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and X-ray energy spectroscopy (XPS) were used to analyze the reaction mechanism of the modification process. Scanning electron microscopy (SEM) and contact angle tests were used to characterize the wettability and surface morphology. A coating with a micro rough structure was successfully constructed by the modification of stearic acid, which imparted superhydrophobicity and antibacterial activity to poplar wood. The stability tests were performed to discuss the stability of its hydrophobic performance. The results showed that it has good mechanical properties, acid and alkali resistance, and UV stability. The durability tests demonstrated that the coating has the function of water resistance and fouling resistance and can maintain the stability of its hydrophobic properties under different temperatures of heat treatment.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2123
Author(s):  
Maria Râpă ◽  
Maria Stefan ◽  
Paula Popa ◽  
Dana Toloman ◽  
Cristian Leostean ◽  
...  

The electrospun nanosystems containing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and 1 wt% Fe doped ZnO nanoparticles (NPs) (with the content of dopant in the range of 0–1 wt% Fe) deposited onto polylactic acid (PLA) film were prepared for food packaging application. They were investigated by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), antimicrobial analysis, and X-ray photoelectron spectrometry (XPS) techniques. Migration studies conducted in acetic acid 3% (wt/wt) and ethanol 10% (v/v) food simulants as well as by the use of treated ashes with 3% HNO3 solution reveal that the migration of Zn and Fe falls into the specific limits imposed by the legislation in force. Results indicated that the PLA/PHBV/ZnO:Fex electrospun nanosystems exhibit excellent antibacterial activity against the Pseudomonas aeruginosa (ATCC-27853) due to the generation of a larger amount of perhydroxyl (˙OOH) radicals as assessed using electron paramagnetic resonance (EPR) spectroscopy coupled with a spin trapping method.


Author(s):  
Erdoğan Karip ◽  
Mehtap Muratoğlu

People are exposed to different kinds of diseases or various accidents in life. Hydroxyapatite (HA) has been widely employed for bone treatment applications. In this study, HA was extracted from sheep bones. Bio-composites were doped with 1, 5, and 10 wt.% of expanded perlite and 5 wt.% of ZrO2–MgO-P2O5. The bio-composites were prepared by the cold isostatic pressing method (250 MPa) and sintered at 900°C for 1 h. In order to evaluate the characteristics of the bio-composites, microhardness, density, X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) analyses were carried out on them. Additionally, the specimens whose characteristics were determined were kept in synthetic body fluid (SBF), and their in vitro behavior was examined. As a result, it was observed that microhardness increased as both the weight and the grain size of the expanded perlite were increased. Calcium silicate, tri-calcium phosphate, and hydroxyapatite were observed in the XRD analysis of all samples, and the formation of apatite structures was increased by addition of ZrO2–MgO–P2O5.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 558
Author(s):  
Wenhui Zhu ◽  
Caiyun Zhang ◽  
Yali Chen ◽  
Qiliang Deng

Photothermal materials are attracting more and more attention. In this research, we synthesized a ferrocene-containing polymer with magnetism and photothermal properties. The resulting polymer was characterized by Fourier-transform infrared (FT-IR), vibrating sample magnetometer (VSM), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Its photo-thermocatalytic activity was investigated by choosing methylene blue (MB) as a model compound. The degradation percent of MB under an irradiated 808 nm laser reaches 99.5% within 15 min, and the degradation rate is 0.5517 min−1, which is 145 times more than that of room temperature degradation. Under irradiation with simulated sunlight, the degradation rate is 0.0092 min−1, which is approximately 2.5 times more than that of room temperature degradation. The present study may open up a feasible route to degrade organic pollutants.


Sign in / Sign up

Export Citation Format

Share Document