scholarly journals Mitigating Silica Fouling and Improving PPCP Removal by Modified NF90 Using In Situ Radical Graft Polymerization

Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 904
Author(s):  
Yi-Li Lin ◽  
Nai-Yun Zheng ◽  
Hao-Yu Gan ◽  
An-Xian Chang ◽  
Huai-Xuan Luo ◽  
...  

This study in-situ modified a commercial nanofiltration membrane, NF90, through the concentration-polymerization-enhanced radical graft polarization method by applying two agents of 3-sulfopropyl methacrylate potassium salt (SPM) and 2-hydroxyethyl methacrylate (HEMA) with different dosages. Surface characterization revealed that the modified membranes became rougher and more hydrophilic compared with the pristine membrane. The modified membranes exhibited considerably enhanced separation performance with 5.8–19.6% higher NaCl rejection and 17.2–19.9% higher pharmaceuticals and personal care products (PPCPs) rejection than the pristine membrane. When treating the feedwater with high silica concentration, the modified membranes exhibited relatively less flux decline with high percentage of reversible fouling, especially the ones modified using a lower monomer concentration (0.01 M SPM and 0.01 M HEMA). Moreover, membrane modification enhanced the PPCP rejection (1.3–5.4%) after silica fouling by mitigating foulant deposition on the membrane surface. The fouling mechanism was confirmed to be intermediate blocking of membrane pores. Therefore, the in-situ modification technique with a low monomer concentration proved to be effective for mitigating silica fouling and improving PPCP rejection, which can be easily performed and cost-effective in practical application.

2020 ◽  
Vol 31 ◽  
pp. 89-95
Author(s):  
Ida Idayu Muhamad ◽  
Siti Nur Hidayah Muhamad ◽  
Mohd Harfiz Salehudin ◽  
Khairul Azly Zahan ◽  
Woei Yenn Tong ◽  
...  

Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


2020 ◽  
Vol 35 (2) ◽  
pp. 221-228
Author(s):  
S.-B. Chen ◽  
T.-X. Li ◽  
S.-H. Wan ◽  
X. Huang ◽  
S.-W. Cai ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 272
Author(s):  
Ayman M. Atta ◽  
Mohamed H. El-Newehy ◽  
Meera Moydeen Abdulhameed ◽  
Mohamed H. Wahby ◽  
Ahmed I. Hashem

The enhancement of both thermal and mechanical properties of epoxy materials using nanomaterials becomes a target in coating of the steel to protect it from aggressive environmental conditions for a long time, with reducing the cost. In this respect, the adhesion properties of the epoxy with the steel surfaces, and its proper superhyrophobicity to repel the seawater humidity, can be optimized via addition of green nanoparticles (NPs). In-situ modification of silver (Ag) and calcium carbonate (CaCO3) NPs with oleic acid (OA) was carried out during the formation of Ag−OA and CaCO3−OA, respectively. The epoxide oleic acid (EOA) was also used as capping for Ca−O3 NPs by in-situ method and epoxidation of Ag−OA NPs, too. The morphology, thermal stability, and the diameters of NPs, as well as their dispersion in organic solvent, were investigated. The effects of the prepared NPs on the exothermic curing of the epoxy resins in the presence of polyamines, flexibility or rigidity of epoxy coatings, wettability, and coatings durability in aggressive seawater environment were studied. The obtained results confirmed that the proper superhyrophobicity, coating adhesion, and thermal stability of the epoxy were improved after exposure to salt spray fog for 2000 h at 36 °C.


Microscopy ◽  
2020 ◽  
Author(s):  
Xiaoguang Li ◽  
Kazutaka Mitsuishi ◽  
Masaki Takeguchi

Abstract Liquid cell transmission electron microscopy (LCTEM) enables imaging of dynamic processes in liquid with high spatial and temporal resolution. The widely used liquid cell (LC) consists of two stacking microchips with a thin wet sample sandwiched between them. The vertically overlapped electron-transparent membrane windows on the microchips provide passage for the electron beam. However, microchips with imprecise dimensions usually cause poor alignment of the windows and difficulty in acquiring high-quality images. In this study, we developed a new and efficient microchip fabrication process for LCTEM with a large viewing area (180 µm × 40 µm) and evaluated the resultant LC. The new positioning reference marks on the surface of the Si wafer dramatically improve the precision of dicing the wafer, making it possible to accurately align the windows on two stacking microchips. The precise alignment led to a liquid thickness of 125.6 nm close to the edge of the viewing area. The performance of our LC was demonstrated by in situ transmission electron microscopy imaging of the dynamic motions of 2-nm Pt particles. This versatile and cost-effective microchip production method can be used to fabricate other types of microchips for in situ electron microscopy.


2021 ◽  
pp. 100773
Author(s):  
Kamoldara Reansuwan ◽  
Rotsukon Jawana ◽  
Saoharit Nitayavardhana ◽  
Sirichai Koonaphapdeelert
Keyword(s):  

Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 561
Author(s):  
José A. Fernández-López ◽  
Marta Doval Miñarro ◽  
José M. Angosto ◽  
Javier Fernández-Lledó ◽  
José M. Obón

The sustainable management of biomass is a key global challenge that demands compliance with fundamental requirements of social and environmental responsibility and economic effectiveness. Strategies for the valorization of waste biomass from agrifood industries must be in line with sustainable technological management and eco-industrial approaches. The efficient bioremoval of the pesticides imazalil and thiabendazole from aqueous effluents using waste biomass from typically Mediterranean agrifood industries (citrus waste, artichoke agrowaste and olive mill residue) revealed that these residues may be transformed into cost-effective biosorbents. Agrifood wastes present irregular surfaces, many different sized pores and active functional groups on their surface, and they are abundant in nature. The surface and adsorptive properties of olive mill residue, artichoke agrowaste and citrus waste were characterized with respect to elemental composition, microstructure, crystallinity, pore size, presence of active functional groups, thermal stability, and point of zero charge. Olive mill residue showed the highest values of surface area (Brunauer–Emmett–Teller method), porosity, crystallinity index, and pH of zero point of charge. Olive mill residue showed the highest efficiency with sorption capacities of 9 mg·g−1 for imazalil and 8.6 mg·g−1 for thiabendazole.


Sign in / Sign up

Export Citation Format

Share Document