scholarly journals Using of Amniotic Membrane Derivatives for the Treatment of Chronic Wounds

Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 941
Author(s):  
Iveta Schmiedova ◽  
Alena Dembickaja ◽  
Ludmila Kiselakova ◽  
Beata Nowakova ◽  
Petr Slama

Amniotic membrane grafts have some therapeutic potential for wounds healing. Early application of amniotic membrane turned out as beneficial in healing ulcers, burns, and dermal injuries. Since the second half of the 20th century, the autotransplants of amniotic/chorion tissue have been also used for the treatment of chronic neuropathic wounds, cornea surface injuries, pterygium and conjunctivochalasis, and dental and neurosurgical applications. The aim of this publication is to prepare a coherent overview of amniotic membrane derivatives use in the field of wound healing and also its efficacy. In total 60 publications and 39 posters from 2000–2020 were examined. In these examined publications of case studies with known study results was an assemblage of 1141 patients, and from this assemblage 977 were successfully cured. In case of posters, the assemblage is 570 patients and 513 successfully cured. From the investigated data it is clear that the treatment efficacy is very high—86% and 90%, respectively. Based on this information the use of the amniotic membrane for chronic wounds can be considered highly effective.

Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 702
Author(s):  
Seyyed-Mojtaba Mousavi ◽  
Zohre Mousavi Nejad ◽  
Seyyed Alireza Hashemi ◽  
Marjan Salari ◽  
Ahmad Gholami ◽  
...  

Despite the advances that have been achieved in developing wound dressings to date, wound healing still remains a challenge in the healthcare system. None of the wound dressings currently used clinically can mimic all the properties of normal and healthy skin. Electrospinning has gained remarkable attention in wound healing applications because of its excellent ability to form nanostructures similar to natural extracellular matrix (ECM). Electrospun dressing accelerates the wound healing process by transferring drugs or active agents to the wound site sooner. This review provides a concise overview of the recent developments in bioactive electrospun dressings, which are effective in treating acute and chronic wounds and can successfully heal the wound. We also discuss bioactive agents used to incorporate electrospun wound dressings to improve their therapeutic potential in wound healing. In addition, here we present commercial dressings loaded with bioactive agents with a comparison between their features and capabilities. Furthermore, we discuss challenges and promises and offer suggestions for future research on bioactive agent-loaded nanofiber membranes to guide future researchers in designing more effective dressing for wound healing and skin regeneration.


2021 ◽  
Vol 22 (23) ◽  
pp. 12614
Author(s):  
Anna-Lisa Pignet ◽  
Marlies Schellnegger ◽  
Andrzej Hecker ◽  
Michael Kohlhauser ◽  
Petra Kotzbeck ◽  
...  

Resveratrol is a well-known polyphenol that harbors various health benefits. Besides its well-known anti-oxidative potential, resveratrol exerts anti-inflammatory, pro-angiogenic, and cell-protective effects. It seems to be a promising adjuvant for various medical indications, such as cancer, vascular, and neurodegenerative diseases. Additionally, resveratrol was shown to display beneficial effects on the human skin. The polyphenol is discussed to be a feasible treatment approach to accelerate wound healing and prevent the development of chronic wounds without the drawback of systemic side effects. Despite resveratrol’s increasing popularity, its molecular mechanisms of action are still poorly understood. To take full advantage of resveratrol’s therapeutic potential, a profound knowledge of its interactions with its targets is needed. Therefore, this review highlights the resveratrol-induced molecular pathways with particular focus on the most relevant variables in wound healing, namely inflammation, oxidative stress, autophagy, collagen proliferation and angiogenesis.


Antibiotics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 396
Author(s):  
Hannah Trøstrup ◽  
Anne Sofie Boe Laulund ◽  
Claus Moser

Normal wound healing occurs in three phases—the inflammatory, the proliferative, and the remodeling phase. Chronic wounds are, for unknown reasons, arrested in the inflammatory phase. Bacterial biofilms may cause chronicity by arresting healing in the inflammatory state by mechanisms not fully understood. Pseudomonas aeruginosa, a common wound pathogen with remarkable abilities in avoiding host defense and developing microbial resistance by biofilm formation, is detrimental to wound healing in clinical studies. The host response towards P. aeruginosa biofilm-infection in chronic wounds and impact on wound healing is discussed and compared to our own results in a chronic murine wound model. The impact of P. aeruginosa biofilms can be described by determining alterations in the inflammatory response, growth factor profile, and count of leukocytes in blood. P. aeruginosa biofilms are capable of reducing the host response to the infection, despite a continuously sustained inflammatory reaction and resulting local tissue damage. A recent observation of in vivo synergism between immunomodulatory and antimicrobial S100A8/A9 and ciprofloxacin suggests its possible future therapeutic potential.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Woan Sean Tan ◽  
Palanisamy Arulselvan ◽  
Shiow-Fern Ng ◽  
Che Norma Mat Taib ◽  
Murni Nazira Sarian ◽  
...  

Chronic wounds represent serious globally health care and economic issues especially for patients with hyperglycemic condition. Wound dressings have a predominant function in wound treatment; however, the dressings for the long-lasting and non-healing wounds are still a significant challenge in the wound care management market. Astonishingly, advanced wound dressing which is embedded with a synthetic drug compound in a natural polymer compound that acts as drug release carrier has brought about promising treatment effect toward injured wound. In the current study, results have shown that Vicenin-2 (VCN-2) compound in low concentration significantly enhanced cell proliferation and migration of HDF. It also regulated the production of pro-inflammatory cytokines such as IL-6, IL-1β, and TNF-α from HDF in wound repair. Treatment of VCN-2 also has facilitated the expression of TGF-1β and VEGF wound healing maker in a dose-dependent manner. A hydrocolloid film based on sodium alginate (SA) incorporated with VCN-2 synthetic compound which targets to promote wound healing particularly in diabetic condition was successfully developed and optimized for its physico-chemical properties. It was discovered that all the fabricated film formulations prepared were smooth, translucent, and good with flexibility. The thickness and weight of the formulations were also found to be uniform. The hydrophilic polymer comprised of VCN-2 were shown to possess desirable wound dressing properties and superior mechanical characteristics. The drug release profiles have revealed hydrocolloid film, which is able to control and sustain the VCN-2 released to wound area. In short, hydrocolloid films consisting of VCN-2 formulations are suitably used as a potential wound dressing to promote restoration of wound injury.


2020 ◽  
Vol 27 (06) ◽  
pp. 1249-1254
Author(s):  
Ibrahim Yamin ◽  
Ayesha ◽  
Ramla ◽  
Muhammad Ajmal

Objectives: The use of human amniotic membrane is essential new concept in wound healing which functions as a biodegradable scaffold on wound surface, as it is a rich hub of stem cells which play an important role in wound healing. Study Design: Randomized Control Trial. Setting: Department of Surgery THQ Hospital Gojra. Period: 1st January 2019 to 30 September 2019. Material & Methods: Experimental study using clinical trial. A case series of 50 patient cases were picked from surgical OPD. Who fall in criteria of chronic non-healing wound with at least three months duration comprising of diabetic, venous ulcers and traumatic non healing wound and neuropathic ulcers. All located on lower limbs. Results: All 50 patient were treated with standard protocol by applying freshly prepared amniotic membrane out of which 4 chronic wounds more than 4 year duration were not healed and 2 cases escaped from the study. HAM dressing was changed after every 7 days and its effect were studied by seeing measuring the reduction in wound size and improvement in pain, swelling and mental stress. Success rate was found about 90% with complete healing. Conclusion: There is a dire need in developing countries to promote the use of HAM, in chronic non healing wounds which is a biological membrane, readily available (free if fresh) with simple sterilization techniques, easy storage and easy application with ultimate goal in achieving speedy cost effective wound healing.


Author(s):  
Catalina Ruiz-Cañada ◽  
Ángel Bernabé-García ◽  
Sergio Liarte ◽  
Mónica Rodríguez-Valiente ◽  
Francisco José Nicolás

The application of amniotic membrane (AM) on chronic wounds has proven very effective at resetting wound healing, particularly in re-epithelialization. Historically, several aspects of AM effect on wound healing have been evaluated using cell models. In keratinocytes, the presence of AM induces the activation of mitogen-activated protein (MAP) kinase and c-Jun N-terminal kinase (JNK) pathways, together with the high expression of c-Jun, an important transcription factor for the progression of the re-epithelialization tongue. In general, the levels of transforming growth factor (TGF)-β present in a wound are critical for the process of wound healing; they are elevated during the inflammation phase and remain high in some chronic wounds. Interestingly, the presence of AM, through epidermal growth factor (EGF) signaling, produces a fine-tuning of the TGF-β signaling pathway that re-conducts the stalled process of wound healing. However, the complete suppression of TGF-β signaling has proven negative for the AM stimulation of migration, suggesting that a minimal amount of TGF-β signaling is required for proper wound healing. Regarding migration machinery, AM contributes to the dynamics of focal adhesions, producing a high turnover and thus speeding up remodeling. This is clear because proteins, such as Paxillin, are activated upon treatment with AM. On top of this, AM also produces changes in the expression of Paxillin. Although we have made great progress in understanding the effects of AM on chronic wound healing, a long way is still ahead of us to fully comprehend its effects.


Author(s):  
Kenji Sato ◽  
Tomoko T. Asai ◽  
Shiro Jimi

Many cells and soluble factors are involved in the wound healing process, which can be divided into inflammatory, proliferative, and remodeling phases. Fibroblasts play a crucial role in wound healing, especially during the proliferative phase, and show heterogeneity depending on lineage, tissue distribution, and extent of differentiation. Fibroblasts from tissue stem cells rather than from healthy tissues infiltrate wounds and proliferate. Some fibroblasts in the wound healing site express the mesenchymal stem cell marker, p75NTR. In the cell culture system, fibroblasts attached to collagen fibrils stop growing, even in the presence of protein growth factors, thus mimicking the quiescent nature of fibroblasts in healthy tissues. Fibroblasts in wound healing sites proliferate and are surrounded by collagen fibrils. These facts indicate presence of new growth-initiating factor for fibroblasts attached to collagen fibrils at the wound healing site, where the collagen-derived peptide, prolyl-hydroxyproline (Pro-Hyp), is generated. Pro-Hyp triggers the growth of p75NTR-positive fibroblasts cultured on collagen gel but not p75NTR-negative fibroblasts. Thus, Pro-Hyp is a low molecular weight growth-initiating factor for specific fibroblasts that is involved in the wound healing process. Pro-Hyp is also supplied to tissues by oral administration of gelatin or collagen hydrolysate. Thus, supplementation of gelatin or collagen hydrolysate has therapeutic potential for chronic wounds. Animal studies and human clinical trials have demonstrated that the ingestion of gelatin or collagen hydrolysate enhances the healing of pressure ulcers in animals and humans and improves delayed wound healing in diabetic animals. Therefore, the low molecular weight fibroblast growth-initiating factor, Pro-Hyp, plays a significant role in wound healing and has therapeutic potential for chronic wounds.


2021 ◽  
Vol 8 (2) ◽  
pp. 654
Author(s):  
Tausif Kamal Syed ◽  
D. K. Apturkar ◽  
K. N. Dandekar ◽  
P. K. Baviskar ◽  
G. J. Jorwekar ◽  
...  

Background: Wound care management has long been a primary point of care for surgeons and clinicians alike. The burden of care and time required in the management of wounds has led to development of innovative and expensive materials which alleviate the burden of healing on our physiology and reinforce the healing mechanisms.  Methods: A case series analysis of 240 patients included on accrual was carried out. These patients were randomly assigned to 3 groups. Group A ulcers were dressed with 2% acetic acid soaked sterile pads. Group B received the acetic acid-iodine combination and group C dressed with traditional Povidone-Iodine ointment and solution. These ulcers were evaluated on admission and on intervals of 5 days with a customized scoring system, Dr. Kamal’s adaptive wound healing score (KAWHS). A sterile culture swab with coverage of healthy granulation tissue was considered the primary end point of the study. Results: Resolution of slough was significantly earlier in group A and B as compared to group C. odor subsided earliest in group A, followed by group B and C. Resolution of purulent discharge was achieved earliest in Group B which was significant in comparison to group A and C. Wound healing was observed to be better in acetic acid usage groups.  Conclusions: Acetic acid dressings are effective in treating chronic non-healing wounds with mono and poly-microbial culture. 


2020 ◽  
Vol 15 (6) ◽  
pp. 1801-1821
Author(s):  
Maria T Colangelo ◽  
Carlo Galli ◽  
Stefano Guizzardi

Aim: The present study evaluated the effects of polydeoxyribonucleotide (PDRN) on tissue regeneration, paying special attention to the molecular mechanisms that underlie its tissue remodeling actions to better identify its effective therapeutic potential in wound healing. Materials & methods: Strategic searches were conducted through MEDLINE/PubMed, Google Scholar, Scopus, Web of Science and the Cochrane Central Register of Controlled Trials, from their earliest available dates to March 2020. The studies were included with the following eligibility criteria: studies evaluating tissue regeneration, and being an in vitro, in vivo and clinical study. Results: Out of more than 90 articles, 34 fulfilled the eligibility criteria. All data obtained proved the ability of PDRN in promoting a physiological tissue repair through salvage pathway and adenosine A2A receptor activation. Conclusion: Up to date PDRN has proved promising results in term of wound regeneration, healing time and absence of side effects.


Pharmaceutics ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 4
Author(s):  
Alma Akhmetova ◽  
Andrea Heinz

With the growth of the aging population worldwide, chronic wounds represent an increasing burden to healthcare systems. Wound healing is complex and not only affected by the patient’s physiological conditions, but also by bacterial infections and inflammation, which delay wound closure and re-epithelialization. In recent years, there has been a growing interest for electrospun polymeric wound dressings with fiber diameters in the nano- and micrometer range. Such wound dressings display a number of properties, which support and accelerate wound healing. For instance, they provide physical and mechanical protection, exhibit a high surface area, allow gas exchange, are cytocompatible and biodegradable, resemble the structure of the native extracellular matrix, and deliver antibacterial agents locally into the wound. This review paper gives an overview on cytocompatible and biodegradable fibrous wound dressings obtained by electrospinning proteins and peptides of animal and plant origin in recent years. Focus is placed on the requirements for the fabrication of such drug delivery systems by electrospinning as well as their wound healing properties and therapeutic potential. Moreover, the incorporation of antimicrobial agents into the fibers or their attachment onto the fiber surface as well as their antimicrobial activity are discussed.


Sign in / Sign up

Export Citation Format

Share Document