scholarly journals Image Processing Tool Quantifying Auto-Tempered Carbides in As-Quenched Low Carbon Martensitic Steels

Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 171 ◽  
Author(s):  
Shashank Ramesh Babu ◽  
Thomas Paul Davis ◽  
Tim Haas ◽  
Antti Jarvenpää ◽  
Jukka Kömi ◽  
...  

As-quenched low-carbon martensitic steels (<0.2 wt.% C) contain auto-tempered carbides. Auto-tempering improves the work hardening and upper-shelf impact energy; however, an efficient characterization method to determine the degree of auto-tempering has not been available. This paper demonstrates an efficient image processing tool that calculates the relative auto-tempered carbide fraction by analyzing scanning electron microscope micrographs. By the process of image segmentation, the qualitative volume fraction of auto-tempered carbides can be determined, and an associated color map produced, which distinguished the levels of auto-tempering. This image processing tool could become useful for the optimization of new low-carbon steel’s mechanical properties.

Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 550 ◽  
Author(s):  
Shashank Ramesh Babu ◽  
Matias Jaskari ◽  
Antti Järvenpää ◽  
David Porter

The effect of hot-mounting for metallographic studies of as-quenched low-carbon martensitic steels has been studied. Hot-mounting is typically carried out at 150–200 °C, i.e., a low-temperature tempering regime. Cold- and hot-mounted specimens from an as-quenched low-carbon auto-tempered steel were examined using a scanning electron microscope and their hardness levels were also compared. It was found that hot-mounting causes additional tempering that manifests as the appearance of new precipitates in those regions that are free of auto-tempered cementite. The observations were rationalized using DICTRA simulations to calculate the potential growth of cementite. Hot-mounting was also shown to cause a small but statistically significant increase in the hardness of the martensite.


2011 ◽  
Vol 284-286 ◽  
pp. 314-317
Author(s):  
Ping Feng ◽  
Xiao Ming Zhang ◽  
Song Jin ◽  
Teng Biao Zheng

Element Mo plays a significant role in Ti(C,N)-based cermets. In this work, mixing was carried out in water and cermets with high mechanical properties were fabricated. The effect of Mo2C content on microstructure and composition was investigated by field emission scanning electron microscope (FSEM) and energy dispersive spectrometer (EDS). Results showed that microstructure becomes uniformly distributed, binder distribution becomes symmetrical and the particle size becomes small with increase of Mo2C content. The volume fraction of (outer + inner) rim structure increases, the volume fractions of core structure and binder phase decrease instead. It was found that Mo2C content in raw material affects compositions in phases. With the level of Mo2C content rising, the concentration of element Mo in rim structure increases, the concentration of element Ti in binder decreases.


2012 ◽  
Vol 525-526 ◽  
pp. 277-280
Author(s):  
Guo Jin ◽  
Xiu Fang Cui ◽  
Er Bao Liu ◽  
Qing Fen Li

The effect of the neodymium content on mechanical properties of the electro-brush plated nanoAl2O3/Ni composite coating was investigated in this paper. The microstructure and phase structure were studied with scanning electron microscope (SEM) and X-ray diffraction (XRD). The hardness and abrasion properties of several coatings with different neodymium content were studied by nanoindentation test and friction / wear experiment. Results show that the coatings are much finer and more compact when the neodymium was added, and the hardness and abrasion property of the coatings with neodymium were improved obviously. Besides, the small cracks conduced by the upgrowth stress in the coatings were ameliorated when the rare earth neodymium was added. The improvement mechanism was further discussed.


1999 ◽  
Vol 5 (S2) ◽  
pp. 518-519
Author(s):  
Dale E. Newbury ◽  
David S. Bright

X-ray mapping is one of the most popular modes for displaying information obtained with x-ray spectrometry performed in the scanning electron microscope. This popularity arises from the ready accessibility and apparent simplicity of information presented in a pictorial fashion, especially when used in conjunction with other SEM imaging modes, such as backscattered, secondary, and specimen current electron images. Further, the rise of powerful, inexpensive computer systems capable of image processing and display has given the analyst a dedicated, on-line tool with the capacity and flexibility needed for problem solving. Figure 1 shows a typical example of mapping. Although the interpretation of x-ray images obtained with a modern digital control and recording system would seem to be straightforward and relatively trivial, there are significant pitfalls and limitations that can easily fool the unwary. In Figure 1, within an individual x-ray map, the observer can reasonably judge where the concentration is lower or higher, at least for a group of contiguous pixels. Can such judgments be made among a set of maps of the same region for different elements, or even for the same element from different regions of the same specimen? With current x-ray processing and display systems, the answers are generally no. In fact, problems that can influence interpretation can arise at each stage of x-ray generation/emission, x-ray spectral collection, processing, and display.


2020 ◽  
Vol 841 ◽  
pp. 114-118
Author(s):  
Marco Antonio Navarrete Seras ◽  
Francisco Javier Domínguez Mota ◽  
Elia Mercedes Alonso Guzmán ◽  
Wilfrido Martínez Molina ◽  
Hugo Luis Chávez García ◽  
...  

. Banks of stone materials from Michoacán, Mexico were characterized, since they are used in the construction of infrastructure in the area. With these materials are made hydraulic concrete mixtures or asphalt mixtures, foundations, paving stones and in restoration of historical monuments. The rocks analyzed and characterized, come from banks of volcanic stone materials and banks of crushed stone materials, which were subjected to mechanical tests such as uniaxial compression resistance (UCR), in addition was used scanning electron microscope (SEM), by means of which the characterization was carried out, obtaining morphological information of the material. The comparison of physical-mechanical properties with the elements they possess is important to estimate their behavior within ceramic matrices or as a structural element.


2007 ◽  
Vol 546-549 ◽  
pp. 241-244 ◽  
Author(s):  
Yun Qi Yan ◽  
H. Zhang ◽  
Q. Chen ◽  
H. Zhong ◽  
W.P. Weng

Rolling and punching techniques of AZ31 alloy were investigated in this paper. Various rolling experiments were carried out to make fine-grained Mg sheets. Punching tests were conducted at the temperatures range from 70 to 300 oC. The analysis revealed that there existed an excellent warm forming temperature for as-rolled AZ31 alloy. A warm deep punching tool setup using heating elements was designed and manufactured to produce the cell phone. Microstructures were observed using optical and scanning electron microscope equipped with EBSD. The textures in as-rolled and as-annealed specimens attribute to different mechanical properties along the various direction.


2020 ◽  
Vol 10 (9) ◽  
pp. 3225
Author(s):  
Wei Liu ◽  
Yongkun Huang ◽  
Zhiwei Ye ◽  
Wencheng Cai ◽  
Shuai Yang ◽  
...  

Multi-level image thresholding is the most direct and effective method for image segmentation, which is a key step for image analysis and computer vision, however, as the number of threshold values increases, exhaustive search does not work efficiently and effectively and evolutionary algorithms often fall into a local optimal solution. In the paper, a meta-heuristics algorithm based on the breeding mechanism of Chinese hybrid rice is proposed to seek the optimal multi-level thresholds for image segmentation and Renyi’s entropy is utilized as the fitness function. Experiments have been run on four scanning electron microscope images of cement and four standard images, moreover, it is compared with other six classical and novel evolutionary algorithms: genetic algorithm, particle swarm optimization algorithm, differential evolution algorithm, ant lion optimization algorithm, whale optimization algorithm, and salp swarm algorithm. Meanwhile, some indicators, including the average fitness values, standard deviation, peak signal to noise ratio, and structural similarity index are used as evaluation criteria in the experiments. The experimental results show that the proposed method prevails over the other algorithms involved in the paper on most indicators and it can segment cement scanning electron microscope image effectively.


2015 ◽  
Vol 1113 ◽  
pp. 23-27 ◽  
Author(s):  
Alireza Fakhari ◽  
Abdul Razak Rahmat ◽  
Mat Uzir Wahit ◽  
Amirali Khalili ◽  
Zyad Salem Alsagayar

In this study a series of green thermoset resins have been produced from blending acrylated epoxidized palm oil (AEPO) and unsaturated polyester (UPE). The UPE/AEPO ratio was changed between 90/10 and 70/30 wt%. The curing behavior and morphology of hybrid systems were investigated by differential scanning calorimeter (DSC) and Scanning electron microscope (SEM). Moreover, studies on mechanical properties were performed by tensile and flexural tests. The results revealed that, these green thermoset resins exhibit thermo mechanical properties comparable to those of commercial unsaturated polyesters.


2014 ◽  
Vol 2014 ◽  
pp. 1-4
Author(s):  
M. Güler

We present phase transitions in a low carbon steel according to existing phases and their magnetism. Scanning electron microscope employed research to clarify and evaluate the microstructural details. Additionally, we utilized from Mössbauer spectroscopy for magnetic characteristics of different existed phases. Scanning electron microscope examinations showed that the pure state of the steel was fully in the ferrite phase with equiaxed grains. Moreover, subsequent heat treatments on the studied steel also ensured the first austenite and then pearlite phase formation. Mössbauer spectroscopy of these phases appeared as a paramagnetic single-line absorption peak for the austenite phase and ferromagnetic six-line spectra for both ferrite and pearlite phases. From Mössbauer data, we determined that the internal magnetic fields of ferrite and pearlite phases were as 32.2 Tesla and 31.3 Tesla, respectively.


Sign in / Sign up

Export Citation Format

Share Document