scholarly journals Friction-Induced Martensitic Transformation and Wear Properties of Stainless Steel under Dry and Wet Conditions

Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 743 ◽  
Author(s):  
Yoon-Seok Lee ◽  
Yuta Kondo ◽  
Mitsuhiro Okayasu

The wear characteristics of SUS304 and SUS316 stainless steels were evaluated at the rotation speeds of 100 m/s, 200 m/s, and 300 m/s under dry and wet conditions. The transition of friction-induced martensite occurred in wear-affected regions of two materials, regardless of the wear test conditions. The specific wear rates (Ws) of both stainless steels increase with increasing rotation speeds, regardless of the circumstances. Moreover, Ws of SUS304 and SUS316, obtained under dry conditions, is significantly higher than that of SUS304 and SUS316 obtained under wet conditions, respectively. This is because that the water film on the wet ring can act as a liquid lubricant between the ring and the block during the tests. After the wear tests, the hardness changes of both SUS304 and SUS316 are much higher under dry conditions, compared to those under wet conditions.

2010 ◽  
Vol 154-155 ◽  
pp. 617-620
Author(s):  
Wei Niu ◽  
Rong Lu Sun ◽  
Yi Wen Lei

Self-lubricating h-BN/Ni coating was prepared on a medium carbon steel substrate by CO2 laser cladding using a powder mixture of NiCrBSi+5%h-BN(wt.%). Microstructures and phase structure of the coating were analyzed using SEM, EDS and XRD. Wear tests were carried out using a M100 pin-on-ring wear tester. The results show that h-BN/Ni coating has much superior war resistance and noticeably lower fiction coefficient under dry sliding wear test conditions.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Bikramjit Basu ◽  
Amartya Mukhopadhyay ◽  
Ankit Mishra ◽  
J. Sarkar

The thermal conductivity of a metallic test piece is one of the principal parameters that influence the temperature buildup at tribocontacts and this normally plays an important role in the unlubricated dry sliding wear of metallic materials. It is, however, not clear whether thermal conductivity is an equally important parameter in the case of wear of metals at cryogenic temperatures, in particular, at liquid nitrogen temperature (LN2) of −196°C. In order to assess the influence of such a physical property of selected nonferrous metals on their tribological behavior in the LN2 environment, we have studied the friction and wear properties of high purity copper (Cu) and titanium (Ti) against the bearing grade steel. These two materials have been processed to produce samples of comparable hardness that have widely different thermal conductivities at room temperature and at test temperature. Wear tests were conducted at three different sliding speeds (0.89 m/s, 1.11 m/s, and 1.34 m/s) under 10 N load, and the friction and wear data were compared. Ti exhibited an order of magnitude higher wear rate (∼10−3 mm3/N m) as compared with Cu in identical test conditions. While evidences of abrasive wear and adhesive wear, without any oxidative wear, were found in worn Cu surfaces, worn Ti surfaces showed evidences of significant oxidative wear and mechanical damage of tribolayers. Higher wear rate in Ti appeared to be a result of oxidative wear of Ti, which seemed to be driven by the depletion of LN2 blanket at the tribocontacts under the influence of high flash temperature (14–76°C) as compared with the boiling temperature of LN2(−196°C). These results demonstrate that the materials with similar hardness subjected to identical LN2 wear test conditions can have significantly different wear rates because of the difference in the flash temperatures, which depend on the thermal conductivity of the test pieces.


2016 ◽  
Vol 868 ◽  
pp. 56-60
Author(s):  
Sung Hun Cho ◽  
Sang Hoon Jeong ◽  
Bum Sung Kim ◽  
Tohru Sekino ◽  
Soo Wohn Lee ◽  
...  

Gelcasting/pressure less sintered Al2O3/SiC nanocomposites has a low sinterability. Also, mechanical and wear properties of these nanocomposites was degraded. Wear mechanism of low sinterability gelcasting nanocomposites was dominated by fracture mode of surface during wear tests. In this study, gelcasting processing and followed plressureless (PL) and hot isostatic pressing (HIP) sintering was attempted to fabricate dense Al2O3/SiC nanocomposites. Wear behaviors of high densities gelcasting nanocomposites were investigated under the identical wear test condition. The comparative specimen was used to hot pressed nanocomposites. Wear rates of dense gelcasting nanocomposites were related to closely initial friction coefficient.


2014 ◽  
Vol 852 ◽  
pp. 153-156
Author(s):  
Bu Nv Liang ◽  
Zhen Yu Zhang

NiCoW alloy powders with and without 0. 4 % La2O3were flame spray welded onto 1045 carbon steel substrate. Vickers microhardness profiles of the coatings were carried out. Sliding wear tests in dry conditions were carried out by means of weight-loss method for several applications in oil industries. For this purpose, Ni-based alloy and high chrome cast iron were used as compared materials. A scanning electron microscope (SEM) was used to analyze the wear phenomena of samples. The result showed that the hardness of the coatings can be improved by addition of 0. 4 % La2O3, and the anti-adhesion, anti-scratching, and plastic deformation resistance abilities of coatings are increased with the addition of La2O3.


Author(s):  
Takahiro Takeuchi ◽  
Shinji Kioka

Abstract Surface rust layers of corroded steel of coastal structures is removed by sea ice action in winter, leaving bare mild steel. This phenomenon is repeated every winter, promoting wear due to increasing corrosion. Serious damage to training levees comprising steel-sheet-pile seawalls on the Sea of Okhotsk, JAPAN occurred earlier than expected, since large wear rates were not considered in their design. This paper proposes a simple method for estimating wear amount (thickness) per year based on wear rate in a steady (mild) wear region obtained from sliding wear tests. This wear thickness can thus be taken as an additional thickness for the expected lifetime of a structure, as a rational countermeasure to corrosion as a sacrificial layer.


2007 ◽  
Vol 14 (02) ◽  
pp. 185-191 ◽  
Author(s):  
B. F. YOUSIF ◽  
N. S. M. EL-TAYEB

In the current decade, introducing water as a lubricant for tribo-engineering materials has become a concern for many researchers. In the present study, the wear and friction characteristics of a polyester (CGRP) composite reinforced with a chopped glass mat (CSM) 450 g/m2 was investigated under dry and wet conditions against a polished, stainless steel counterface. Two techniques known as Pin on Disc (POD) and Block on Ring (BOR) were used to perform the experimental tests. The tests were conducted on a newly developed machine that could carry out both techniques. The effects of the applied load (30, 50, 70, 100 N ), sliding velocity (2.8 and 3.9 m/s), and test duration (5–30 min) on wear rates and the coefficients of friction were investigated. Under dry conditions, the temperature of the interface was measured with an infrared thermometer. Worn surface morphologies of the composite were observed with a scanning electron microscopy (SEM) and damage features were characterized. The results showed that the test technique and conditions had significant influences on the wear and friction performance of the CGRP composite. The presence of water as a lubricant enhanced the wear and friction characteristics of the composite as determined by both POD and BOR, and the SEM micrographs demonstrated several damage features under dry/wet conditions, e.g., deformation, as well as fiber peeling, cracking, and cutting.


2013 ◽  
Vol 27 (19) ◽  
pp. 1341019 ◽  
Author(s):  
PENGFEI YAN ◽  
DEPING WANG ◽  
BIAO YAN ◽  
FAN MO

Recently, the wear properties of high-leaded tin bronze were greatly concerned. In this work, the effect of size refinement and distribution of the lubricating lead phases in the spray forming (SF) high-leaded tin bronze on wear rates was studied by using scanning electron microscopy and sliding adhesive wear tests. It was observed that compared to the conventional casting bronze, the SF bronze features finer and more dispersed lead phases that formed more lubricating films in microstructure, which leads to the less wear rates.


Author(s):  
Habib S. Benabdallah ◽  
Jianjun J. Wei

The friction and wear properties of PTFE and POM were investigated using a ball-on-steel ring tester under dry conditions and conditions lubricated by paraffin and 10W-30 oils. SEM, EDAX, FT-IR and surface wettability techniques were used to characterize and assess the morphology and chemical composition of the original surfaces as well as wear track, transfer film and wear debris for different loads and speeds. Although the friction was high, similar behaviours to those reported were observed. The experimentally determined surface temperature of the plastic revealed optimum loading levels for each sliding speed at which the friction and wear rates become minimal and the thermal effect stabilizes. In boundary-like lubrication using both oils, friction and wear were significantly reduced with the exception of an increase in wear rate with load when POM was lubricated with 10W-30 oil. Surface analysis revealed that the formation of lubricious protective layers on the surfaces in contact is crucial to reducing friction and more importantly wear. FT-IR results confirmed that film transfer occurs in the case of POM.


2007 ◽  
Vol 124-126 ◽  
pp. 1409-1412
Author(s):  
Jung Moo Lee ◽  
Suk Bong Kang ◽  
Jian Min Han

Thick alumina coatings were performed on A356-20vol.% SiCp composites by micro-arc oxidation (MAO) process with different processing time. The dry sliding wear tests were performed on A356-20vol.% SiCp composites with and without surface coating. The samples were tested by pin-on-disc wear test equipment with different applied load and sliding velocity. It is revealed that MAO coating improves resistance to wear of A356-20vol.% SiCp composites in the severe wear conditions. On the basis of the observations and analysis of the worn surface, worn subsurface, wear debris and variation of friction coefficient, the role of MAO coating layer is examined.


2021 ◽  
Vol 63 (1) ◽  
pp. 85-91
Author(s):  
Güven Yarkadaş ◽  
Levent Cenk Kumruoğlu ◽  
Selma Özarslan ◽  
Hüseyin Şevik

Abstract In the present study, the effect of an La alloying element with different quantities (1, 3 and 5 wt.-%) on the microstructure, mechanical and dry sliding wear properties of Mg- 3Al-3Sn-3Sb alloy was investigated. The wear tests were done on the alloys using pin on-disk equipment against a 4140 steel disc as counterpart under three different sliding velocities of 0.3, 0.6 and 1.2 ms-1 and four different loads of 5, 10, 20 and 40 N. The microstructural results showed that the new intermetallic phases (La5Sn3 and LaSnSb2) were formed with addition of La to the main alloy. Also, it was observed that the hardness of the Mg-3Al-3Sn-3Sb alloy was raised with increasing La addition. Furthermore, the tensile properties of the Mg-3Al-3Sn-3Sb alloy improved with rising La content at room and elevated temperature. The wear rates of the alloys increase with increasing of the sliding speed and load. In addition to this, the wear rate of the Mg-3Al-3Sn-3Sb alloy was found to be higher than that of the La content alloys for all test conditions.


Sign in / Sign up

Export Citation Format

Share Document