scholarly journals Dynamic Tension Deformation of Rare-Earth Containing Mg-1.9Mn-0.3Ce Alloy Sheet along the Rolling Direction at Various Temperatures

Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1473
Author(s):  
Jin Wang ◽  
Yang Wang ◽  
Ziran Li

The tensile properties of rare-earth containing Mg-1.9Mn-0.3Ce alloy sheet along the rolling direction were experimentally investigated within the strain rate and temperature ranges of 0.001–1300 s−1 and 213–488 K. The obtained stress-strain responses of the alloy sheet indicate that both yield strength and strain-hardening rate increase when the strain rate increases, whereas they decrease with increase of temperature. Microscopic examination results show that basal slip, prismatic slip, and {101¯2} tension twinning take place in the tensile plastic deformation, while the occurrence of twinning is not obviously affected by the rate and temperature. Tensile samples tend to fracture in a ductile mode with increasing strain rate and temperature.

2021 ◽  
Vol 59 (1) ◽  
pp. 8-13
Author(s):  
Il-Hyun Kim ◽  
Myung-Ho Lee ◽  
Yang-Il Jung ◽  
Hyun-Gil Kim ◽  
Jae-Il Jang

The behavior of dynamic strain aging (DSA) in a Zr-1.5Nb-0.4Sn-0.2Fe-0.1Cr alloy strip was investigated at temperature ranges of 25–600 °C via a tensile test. The tensile test was performed at two different strain rates 8.33 × 10<sup>-5</sup> and 1.67 × 10<sup>-2</sup> s<sup>-1</sup>. The shear stress of the alloy strip revealed a linear dependency on the test temperature when the specimens were tested under a higher strain rate (1.67 × 10<sup>-2</sup> s<sup>-1</sup>). However, the linear relationship was broken due to DSA when the samples were deformed under a lower strain rate (8.33 × 10<sup>-5</sup> s<sup>-1</sup>). The discrepancy was most significant at 400 °C. The trend in DSA behavior was similar irrespective of the orientation of the samples, i.e., rolling direction (RD) or transverse direction (TD). However, the effect of DSA was larger in the TD samples than the RD samples. The phenomena were interpreted to the variation in work hardening exponents and strain rate sensitivity. The value of the exponent decreased from 0.14 to 0.08 along a RD and from 0.1 to 0.07 along a TD, respectively. However, the smallest value was observed at 400–500 °C irrespective of the specimen orientation, which is consistent with the DSA behavior. It is suggested that the DSA was caused by an interaction of moving dislocations with solute atoms typically oxygen.


2010 ◽  
Vol 638-642 ◽  
pp. 1506-1511 ◽  
Author(s):  
Sang Bong Yi ◽  
Dietmar Letzig ◽  
Kerstin Hantzsche ◽  
Rodolfo Gonzalez Martinez ◽  
Jan Bohlen ◽  
...  

The influences of rare earth elements addition on the crystallographic texture and microstructural evolutions are examined during rolling and annealing of Mg-sheets. In case of Nd or Y additions, dynamic recrystallisation is suppressed such that the deformed microstructure is observed after hot rolling with relatively large strain per pass. Cold rolled binary Mg-Nd alloy sheet shows strong texture with splitting of the basal poles in the rolling direction, however, the texture intensity decreases significantly during the recrystallisation annealing. From the comparison of deep drawing behaviours between commercial ZE10 and AZ31 sheets, it is observed that the addition of the rare earth elements and accompanying texture changes result in the improved formability.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2163
Author(s):  
Krzysztof Żaba ◽  
Tomasz Trzepieciński ◽  
Sandra Puchlerska ◽  
Piotr Noga ◽  
Maciej Balcerzak

The paper is devoted to highlighting the potential application of the quantitative imaging technique through results associated with work hardening, strain rate and heat generated during elastic and plastic deformation. The aim of the research presented in this article is to determine the relationship between deformation in the uniaxial tensile test of samples made of 1-mm-thick nickel-based superalloys and their change in temperature during deformation. The relationship between yield stress and the Taylor–Quinney coefficient and their change with the strain rate were determined. The research material was 1-mm-thick sheets of three grades of Inconel alloys: 625 HX and 718. The Aramis (GOM GmbH, a company of the ZEISS Group) measurement system and high-sensitivity infrared thermal imaging camera were used for the tests. The uniaxial tensile tests were carried out at three different strain rates. A clear tendency to increase the sample temperature with an increase in the strain rate was observed. This conclusion applies to all materials and directions of sample cutting investigated with respect to the sheet-rolling direction. An almost linear correlation was found between the percent strain and the value of the maximum surface temperature of the specimens. The method used is helpful in assessing the extent of homogeneity of the strain and the material effort during its deformation based on the measurement of the surface temperature.


2009 ◽  
Vol 65 ◽  
pp. 19-31
Author(s):  
Ruben Cuamatzi-Melendez ◽  
J.R. Yates

Little work has been published concerning the transferability of Gurson’s ductile damage model parameters in specimens tested at different strain rates and in the rolling direction of a Grade A ship plate steel. In order to investigate the transferability of the damage model parameters of Gurson’s model, tensile specimens with different constraint level and impact Charpy specimens were simulated to investigate the effect of the strain rate on the damage model parameters of Gurson model. The simulations were performed with the finite element program ABAQUS Explicit [1]. ABAQUS Explicit is ideally suited for the solution of complex nonlinear dynamic and quasi–static problems [2], especially those involving impact and other highly discontinuous events. ABAQUS Explicit supports not only stress–displacement analyses but also fully coupled transient dynamic temperature, displacement, acoustic and coupled acoustic–structural analyses. This makes the program very suitable for modelling fracture initiation and propagation. In ABAQUS Explicit, the element deletion technique is provided, so the damaged or dead elements are removed from the analysis once the failure criterion is locally reached. This simulates crack growth through the microstructure. It was found that the variation of the strain rate affects slightly the value of the damage model parameters of Gurson model.


2012 ◽  
Vol 557-559 ◽  
pp. 1344-1348
Author(s):  
Hong Mei Chen ◽  
Hua Shun Yu ◽  
Guang Hui Min ◽  
Yun Xue Jin

The microstructure and macrotexture of ZK60 alloy sheet were investigated through OM and XRD, which were produced by twin roll casting and sequential warm rolling. Microstructure of twin roll cast ZK60 alloy changed from dendrite structure to fibrous structure with elongated grains and high density shear bands along the rolling direction after warm rolling process at different rolling parameters. The density of shear bands increased with the decreasing of the rolling temperature, or the increasing of per pass rolling reduction. Dynamic recrystallization could be found during the warm rolling process at and above 350oC, and many fine grains could be found in the shear band area. The warm rolled ZK60 alloy sheet exhibited strong (0001) basal pole texture. The formation of the shear bands tends to cause the basal pole tilt slightly to the transverse direction after warm rolling. The intensity of (0001) pole figure increased with the decreasing of rolling temperature, or the increasing of per pass rolling reduction.


2012 ◽  
Vol 557-559 ◽  
pp. 80-84
Author(s):  
Pei Feng Zhao ◽  
Qing Fu Wang

According to hot compressive test date, relationship between flow stress, temperature, strain rate and strain is studied. Material constant value is researched through single regression, such as activation energy Q, stress level parameters and structure factor A. The results show dynamic recovery is principal in the softening process of .titanium and Ti-6Al-4V-Rare Earth Titanium is positive strain rate sensitive material.


2016 ◽  
Vol 838-839 ◽  
pp. 568-573 ◽  
Author(s):  
Xiu Quan Han ◽  
Ming Jie Fu

The superplasticity of high Nb Ti3Al based alloy - Ti-23Al-17Nb (at.%) alloy sheet under the conditions of 940~1000°C and 5.5×10-5s-1~1.7×10-3s-1are studied. The results show the elongation changes as a parabola with the deformation temperature increasing, and the maximum elongation obtained at 960°C and 5.5x10-5s-1 is 1447.5%. Work hardening stage increases much more than softening stage when strain rate is decreased due to the increasing of element Nb. Compared with primary microstructure, the lath-like α2 grains gradually disappeared, the α2 grains became more equiaxed, and the content and size of α2 grains are decreasing with increasing of deformation temperature. The volume fraction ratio of α2 and β phase at the optimum deformation condition is 50:50%. The cavities mechanism at the fracture tip was discussed; it can be defined that the cavities could be avoided when deformation temperature is higher than 940°C.


2005 ◽  
Vol 488-489 ◽  
pp. 461-464 ◽  
Author(s):  
Yong Chao Xu ◽  
Shi Hong Zhang ◽  
H.M. Liu ◽  
Z.T. Wang ◽  
W.T. Zheng ◽  
...  

The extruded sheets were prepared at the temperature between 350ıand 400ı, and the magnesium alloy sheet was manufactured by a new method, cross rolling, in which the rolling direction was changed in each pass. At the time, deep drawing of magnesium alloy sheet was investigated at elevated temperatures. The results show that the sheet has refined-grain by cross-rolling after it was annealed at 250ı, and the formability is significantly improved at lower temperatures, which is superior to the extruded sheet and the one-way rolled sheet. Deep drawing of magnesium alloy was performed successfully, and cylindrical cup of limited drawing ratio (LDR) 2.6 and 35 mm deep rectangular box (65ı50) was achieved at the lower temperature of 170ı. The different types of fracture were analyzed and reasonable parameters were determined.


DYNA ◽  
2016 ◽  
Vol 83 (195) ◽  
pp. 77-83 ◽  
Author(s):  
María José Quintana Hernández ◽  
José Ovidio García ◽  
Roberto González Ojeda ◽  
José Ignacio Verdeja

The use of Cu and Ti in Zn alloys improves mechanical properties as solid solution and dispersoid particles (grain refiners) may harden the material and reduce creep deformation. This is one of the main design problems for parts made with Zn alloys, even at room temperature. In this work the mechanical behavior of a Zn-Cu-Ti low alloy is presented using tensile tests at different strain rates, as well as creep tests at different loads to obtain the value of the strain rate coefficient m in samples parallel and perpendicular to the rolling direction of the Zn strip. The microstructure of the alloy in its raw state, as well as heat treated at 250°C, is also analyzed, as the banded structure produced by rolling influences the strengthening mechanisms that can be achieved through the treatment parameters.


Sign in / Sign up

Export Citation Format

Share Document