scholarly journals Efficient Recovery of Rare Earth Elements (Pr(III) and Tm(III)) From Mining Residues Using a New Phosphorylated Hydrogel (Algal Biomass/PEI)

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 294
Author(s):  
Chunlin He ◽  
Khalid A.M. Salih ◽  
Yuezhou Wei ◽  
Hamed Mira ◽  
Adel A.-H. Abdel-Rahman ◽  
...  

With the target of recovering rare earth elements (REEs) from acidic leachates, a new functionalized hydrogel was designed, based on the phosphorylation of algal/polyethyleneimine beads. The functionalization strongly increased the sorption efficiency of the raw material for Pr(III) and Tm(III). Diverse techniques were used for characterizing this new material and correlating the sorption performances and mechanisms to the physicochemical structure of the sorbent. First, the work characterized the sorption properties from synthetic solutions with the usual procedures (study of pH effect, uptake kinetics, sorption isotherms, metal desorption and sorbent recycling, and selectivity from multi-element solutions). Optimum pH was found close to 5; sorption isotherms were fitted by the Langmuir equation (maximum sorption capacities close to 2.14 mmol Pr g−1 and 1.57 mmol Tm g−1). Fast uptake kinetics were modeled by the pseudo-second order rate equation. The sorbent was highly selective for REEs against alkali-earth and base metals. The sorbent was remarkably stable for sorption and desorption operation (using 0.2 M HCl/0.5 M CaCl2 solutions). The sorbent was successfully applied to the leachates of Egyptian ore (pug leaching) after a series of pre-treatments (precipitation steps), sorption, and elution. The selective precipitation of REEs using oxalic acid allows for the recovery of a pure REE precipitate.

2021 ◽  
pp. 105733
Author(s):  
B.K. Kenzhaliyev ◽  
T. Yu Surkovа ◽  
M.N. Azlan ◽  
S.B. Yulusov ◽  
B.M. Sukurov ◽  
...  

2017 ◽  
Vol 19 (20) ◽  
pp. 4816-4828 ◽  
Author(s):  
Feiping Zhao ◽  
Eveliina Repo ◽  
Yang Song ◽  
Dulin Yin ◽  
Samia Ben Hammouda ◽  
...  

PEI acts not only as a cross-linker but also as a chelating agent for RE ions.


2016 ◽  
Vol 18 (3) ◽  
pp. 753-759 ◽  
Author(s):  
H. M. Dhammika Bandara ◽  
Kathleen D. Field ◽  
Marion H. Emmert

This manuscript describes the development of an efficient process for the recovery of rare earth elements from materials mixtures such as in motors with a recovery rate of >80%. Selective dissolution enables efficient separation of steel and copper and selective precipitation of RE salts is the key for obtaining pure RE products.


Minerals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 262 ◽  
Author(s):  
Xiaosheng Yang ◽  
Hannu Tapani Makkonen ◽  
Lassi Pakkanen

Rare earth elements (REEs) are defined as lanthanides with Y and Sc. Rare earth occurrences including the REE-bearing phases and their distributions, measured by rare earth oxides (REOs), in the streams of processing a phosphate ore were determined by using MLA, the mineral liberation analysis and EPMA, the electron probe microanalysis. The process includes an apatite ore beneficiation by flotation and further processing of the beneficiation concentrate with sulfuric acid. Twenty-six, sixty-two and twelve percent of the total REOs (TREO) contents from the ore end up in the products of beneficiation tailings, phosphogypsum (PG) and phosphoric acid, respectively. Apatite, allanite, monazite and pyrochlore are identified as REE-bearing minerals in the beneficiation process. In the beneficiation tailings, the REEs are mainly distributed in monazite (10.3% TREO), apatite (5.9% TREO), allanite (5.4% TREO) and pyrochlore (4.3% TREO). Gypsum, monazite, apatite and other REE-bearing phases were found to host REEs in the PG and the REEs distributions are 44.9% TREO in gypsum, 15.8% TREO in monazite, 0.6% TREO in apatite and 0.6% TREO in other REE-bearing phases. Perspectives on the efficient recovery of REEs from the beneficiation tailings and the PG are discussed.


Gels ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 12 ◽  
Author(s):  
Mohammed F. Hamza ◽  
Amal E. Mubark ◽  
Yuezou Wei ◽  
Thierry Vincent ◽  
Eric Guibal

The necessity to recover uranium from dilute solutions (for environmental/safety and resource management) is driving research towards developing new sorbents. This study focuses on the enhancement of U(VI) sorption properties of composite algal/Polyethylenimine beads through the quaternization of the support (by reaction with glycidyltrimethylammonium chloride). The sorbent is fully characterized by FTIR, XPS for confirming the contribution of protonated amine and quaternary ammonium groups on U(VI) binding (with possible contribution of hydroxyl and carboxyl groups, depending on the pH). The sorption properties are investigated in batch with reference to pH effect (optimum value: pH 4), uptake kinetics (equilibrium: 40 min) and sorption isotherms (maximum sorption capacity: 0.86 mmol U g−1). Metal desorption (with 0.5 M NaCl/0.5 M HCl) is highly efficient and the sorbent can be reused for five cycles with limited decrease in performance. The sorbent is successfully applied to the selective recovery of U(VI) from acidic leachate of uranium ore, after pre-treatment (cementation of copper, precipitation of rare earth elements with oxalate, and precipitation of iron). A pure yellow cake is obtained after precipitation of the eluate.


2018 ◽  
Vol 14 (1) ◽  
pp. 195
Author(s):  
Diana Hendrati ◽  
Erianti Siska Purnamasari ◽  
Syulastri Effendi ◽  
Santhy Wyantuti

<p>Gadolinium (Gd) merupakan salah satu logam tanah jarang, dimana logam tanah jarang dapat diekstrak dari mineral salah satunya mineral monasit. Logam Gd biasanya digunakan sebagai bahan dasar <em>contrast agent</em> dalam dunia kesehatan. Ligan dibutilditiokarbamat mampu membentuk senyawa kompleks dengan cara mengikat logam sehingga membentuk khelat yang dapat digunakan untuk ekstraksi. Tujuan dari penelitian ini adalah memantapkan sintesis ligan dibutilditiokarbamat berdasarkan desain eksperimen dan karakterisasi kompleks antara Gd(III) dengan ligan dibutilditiokarbamat hasil sintesis. Penelitian ini diawali dengan pembuatan desain eksperimen untuk sintesis ligan dan ekstraksi Gd(III) dengan ligan, kemudian proses sintesis dan ekstraksi dilakukan sesuai dengan desain eksperimen, hasil sintesis dan ekstraksi dikarakterisasi menggunakan metode spektroskopi serta diuji kelarutannya dalam pelarut organik. Data yang diperoleh menunjukkan bahwa sintesis ligan dibutilditiokarbamat optimal pada suhu 4 °C, perbandingan dibutilamin dan karbondisulfida yaitu 1 : 3 dengan perbandingan mol ammonia terhadap dibutilamin yaitu 1 : 4, sedangkan kondisi optimal untuk ekstraksi Gd(III) dengan ligan yaitu pada pH 6, dengan perbandingan mol Gd(III) dan ligan yaitu 1 : 4 dan lama ekstraksi 60 menit. Oleh karena itu ligan dibutilditiokarbamat hasil sintesis berpotensi digunakan sebagai ekstraktan untuk ekstraksi Gd(III). Hasil prediksi ligan berdasarkan desain eksperimen yaitu sebesar 56,12% sedangkan prediksi ekstraksi Gd(III) dengan ligan hasil sintesis diperoleh sebesar 78,41%. Kesimpulan dari penelitian ini bahwa sintesis ligan dibutilditiokarbamat  berdasarkan desain eksperimen dapat dikembangkan untuk sintesis skala besar.</p><p>Gadolinium (Gd) is one of the rare-earth elements, whereas rare-earth elements can be extracted from monazite. Gd is usually used as raw material for synthesizing contrast agent<em> </em>in medicine field. Dibuthyldithiocarbamate ligand can form a complex compound with metal. This ligand will bind a metal and then forming chelate which is used for extraction. The purpose of this research is to ensure procedure of dibuthyldithiocarbamate ligand synthesis based on the design of experiment and to study the characterization of reaction result between Gd(III) and dibuthyldithiocarbamate ligand which this ligand is synthesis result. This research begins with making design of experiment for ligand synthesis and Gd(III) extraction with ligand, then perform the process of synthesis and extraction according to the design of experiment, the result of synthesis and extraction were characterized by spectroscopy method and solubility tested in organic solvent. The data was collected indicate that the optimal condition of dibuthyldithiocarbamate ligan synthesis at 4 °C (temperature), the ratio of di-n-butylamine and carbon disulphide is 1:3 with the mole ratio of ammonia to the di-n-butylamine 1:4, while the optimal conditions for gadolinium extraction with ligand at pH 6, the mol ratio of gadolinium and ligand is 1:4 and 60 minutes extraction time. Hence, dibuthyldithiocarbamate ligand can be used as extractan for extracting Gd(III). The prediction of ligand based on the experimental design is 56.12% while the prediction of Gd(III) extraction with ligand of the synthesis result is obtained equal to 78.41%. The conclusion of this research is that the synthesis of dibuthyldithiocarbamate ligand based on the experimental design can be developed for large-scale synthesis.</p>


2018 ◽  
Vol 14 (2) ◽  
pp. 219
Author(s):  
Diana Hendrati ◽  
Erianti Siska Purnamasari ◽  
Syulastri Effendi ◽  
Santhy Wyantuti

<p>Gadolinium (Gd) merupakan salah satu logam tanah jarang, dimana logam tanah jarang dapat diekstrak dari mineral salah satunya mineral monasit. Logam Gd biasanya digunakan sebagai bahan dasar <em>contrast agent</em> dalam dunia kesehatan. Ligan dibutilditiokarbamat mampu membentuk senyawa kompleks dengan cara mengikat logam sehingga membentuk khelat yang dapat digunakan untuk ekstraksi. Tujuan dari penelitian ini adalah memantapkan sintesis ligan dibutilditiokarbamat berdasarkan desain eksperimen dan karakterisasi kompleks antara Gd(III) dengan ligan dibutilditiokarbamat hasil sintesis. Penelitian ini diawali dengan pembuatan desain eksperimen untuk sintesis ligan dan ekstraksi Gd(III) dengan ligan, kemudian proses sintesis dan ekstraksi dilakukan sesuai dengan desain eksperimen, hasil sintesis dan ekstraksi dikarakterisasi menggunakan metode spektroskopi serta diuji kelarutannya dalam pelarut organik. Data yang diperoleh menunjukkan bahwa sintesis ligan dibutilditiokarbamat optimal pada suhu 4 °C, perbandingan dibutilamin dan karbondisulfida yaitu 1 : 3 dengan perbandingan mol ammonia terhadap dibutilamin yaitu 1 : 4, sedangkan kondisi optimal untuk ekstraksi Gd(III) dengan ligan yaitu pada pH 6, dengan perbandingan mol Gd(III) dan ligan yaitu 1 : 4 dan lama ekstraksi 60 menit. Oleh karena itu ligan dibutilditiokarbamat hasil sintesis berpotensi digunakan sebagai ekstraktan untuk ekstraksi Gd(III). Hasil prediksi ligan berdasarkan desain eksperimen yaitu sebesar 56,12% sedangkan prediksi ekstraksi Gd(III) dengan ligan hasil sintesis diperoleh sebesar 78,41%.</p><p><strong>The Consolidation of Dibutyldithiocarbamate (DBDTC) Synthesis as Gadolinium Metal Extraction Based On Experimental Design. </strong>Gadolinium (Gd) is one of the rare-earth elements, whereas rare-earth elements can be extracted from monazite. Gd is usually used as raw material for synthesizing contrast agent<em> </em>in medicine field. Dibuthyldithiocarbamate ligand can form a complex compound with metal. This ligand will bind a metal and then forming chelate which is used for extraction. The purpose of this research is to ensure procedure of dibuthyldithiocarbamate ligand synthesis based on the design of experiment and to study the characterization of reaction result between Gd(III) and dibuthyldithiocarbamate ligand which this ligand is synthesis result. This research begins with making design of experiment for ligand synthesis and Gd(III) extraction with ligand, then perform the process of synthesis and extraction according to the design of experiment, the result of synthesis and extraction were characterized by spectroscopy method and solubility tested in organic solvent. The data was collected indicate that the optimal condition of dibuthyldithiocarbamate ligan synthesis at 4 °C (temperature), the ratio of di-n-butylamine and carbon disulphide is 1:3 with the mole ratio of ammonia to the di-n-butylamine 1:4, while the optimal conditions for gadolinium extraction with ligand at pH 6, the mol ratio of gadolinium and ligand is 1:4 and 60 minutes extraction time. Hence, dibuthyldithiocarbamate ligand can be used as extractan for extracting Gd(III). The prediction of ligand based on the experimental design is 56.12% while the prediction of Gd(III) extraction with ligand of the synthesis result is obtained equal to 78.41%. The conclusion of this research is that the synthesis of dibuthyldithiocarbamate ligand based on the experimental design can be developed for large-scale synthesis.</p>


2014 ◽  
Vol 16 (3) ◽  
pp. 80-85 ◽  
Author(s):  
Wojciech Kujawski ◽  
Beata Pospiech

Abstract The growing industrial application of rare earth metals led to great interest in the new technologies for the recycling and recovery of REEs from diverse sources. This work reviews the various methods for the recycling of spent fluorescent lamps. The spent fluorescent lamps are potential source of important rare earth elements (REEs) such as: yttrium, terbium, europium, lanthanum and cerium. The characteristics of REEs properties and construction of typical fl uorescent lamps is described. The work compares also current technologies which can be utilized for an efficient recovery of REEs from phosphors powders coming from spent fluorescent lamps. The work is especially focused on the hydrometallurgical and pyrometallurgical processes. It was concluded that hydrometallurgical processes are especially useful for the recovery of REEs from spent fluorescent lamps. Moreover, the methods used for recycling of REEs are identical or very similar to those utilized for the raw ores processing.


2020 ◽  
Vol 22 (4) ◽  
pp. 1105-1112 ◽  
Author(s):  
Xuan Xu ◽  
Saso Sturm ◽  
Zoran Samardzija ◽  
Janez Scancar ◽  
Katarina Markovic ◽  
...  

A closed loop of recovering rare-earth elements and transition metals from Nd–Fe–B magnets with the total re-use of the electrolyte using a facile electrolysis-selective precipitation procedure.


Sign in / Sign up

Export Citation Format

Share Document