scholarly journals Optimization of the Cutting Regime in the Turning of the AISI 316L Steel for Biomedical Purposes Based on the Initial Progression of Tool Wear

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1698
Author(s):  
Ricardo del Risco-Alfonso ◽  
Roberto Pérez-Rodríguez ◽  
Patricia del Carmen Zambrano Robledo ◽  
Marcelino Rivas Santana ◽  
Ramón Quiza

The development of biomedical devices has improved the quality of life for millions of people. The increase in life expectancy generates an increase in the demand for these devices. One of the most used materials for these purposes is 316 L austenitic stainless steel due to its mechanical properties and good biocompatibility. The objective of the present investigation was to identify the dependence between the main cutting force, the initial speed of the tool wear, the surface roughness, and the parameters of the cutting regime. Based on these dependencies, a multi-objective optimization model is proposed to minimize the energy consumed and initial wear rate, as well as to maximize productivity, maintaining the surface roughness values below those established by the ISO 5832-1 standard. The wear of the cutting tool was measured on a scanning electron microscope. For the optimization process, a genetic algorithm based on NSGA-II (Non-nominated Sorting Genetic Algorithm) was implemented. The input variables were the cutting speed and the feed in three levels. The cutting force and surface roughness were set as restrictions. It is concluded that the mathematical model allows for the optimization of the cutting regime during dry turning and with the use of MQL (Minimum Quantity Lubrication) with BIDEMICS JX1 ceramic tools (NTK Cutting Tools, Wixom, MI, USA), of AISI 316 L steel for biomedical purposes. Pareto sets and boundaries allow for choosing the most appropriate solution according to the specific conditions of the workshop where it is applied, minimizing the initial progression of tool wear and energy consumed, and maximizing productivity by guaranteeing the surface roughness values established for these types of parts according to the standard.

2010 ◽  
Vol 102-104 ◽  
pp. 653-657 ◽  
Author(s):  
Xu Hong Guo ◽  
Li Jun Teng ◽  
Wei Wang ◽  
Ting Ting Chen

In recent years, the machinability of magnesium alloy is concerned more and more by the public. In this paper, a study on the cutting properties of magnesium alloy AZ91D when dry turning with kentanium cutting tools is presented. It shows the cutting force measured by a data acquisition system which is made up of Kistler9257B piezoelectric crystal sensor dynamometer, Kistler5070A10100 charge amplifier and computer. The effect of cutting parameters on cutting force was studied, and the experimental formula was built. The tool wear and chip characteristics were observed with KYKY-EM3200 electron scanning microscope and EDAX PV9900 alpha ray spectrometer, while the surface roughness of the workpiece was measured with 2205 profilometer. Results showed that the cutting depth was the main influence factor on cutting force, followed by feed rate and cutting speed . The main form of tool wear showed to be diffusive wear and adhesive wear. The feed rate had the main influence on chip form and the workpiece surface roughness, cutting speed was less effective, the cutting depth was the least.


2007 ◽  
Vol 364-366 ◽  
pp. 1015-1020 ◽  
Author(s):  
Wei Shin Lin

This study discusses the high speed turning of the hardened mold steel by ceramic cutting tools. From the experiments, we can understand the tool wear condition, tool failure mode and the surface roughness variation of the workpiece. In order to understand the tool wear and surface roughness characteristics during the high speed turning process of the hardened mold steel by ceramic cutting tools, the polynomial network was used to construct the tool wear and surface roughness prediction model. The polynomial network is constituted of several function nodes; these function nodes can be self-organizing into the optimal network structures according to the predicted square error (PSE) criteria. It is shown that the polynomial network can correctly correlate the input variables (cutting speed, feed rate and cutting time) with the output variables (tool wear and surface roughness). Based on the tool wear and surface roughness prediction model constructed, the wear amount of the ceramic cutting tools and the surface roughness of the workpiece can be predicted with reasonable accuracy if the turning conditions are given and it is also consistent with the experimental results very well. The manufacturing engineers can then , according to the prediction results, execute the process planning, decide the manufacturing process and the tool change time, thus preventing the cutting tool from being over-worn or failing when it is in use.


2021 ◽  
Author(s):  
Hüseyin Gürbüz ◽  
Şehmus Baday

Abstract Although Inconel 718 is an important material for modern aircraft and aerospace, it is a kind material, which is known to have low machinability. Especially, while these types of materials are machined, high cutting temperatures, BUE on cutting tool, high cutting forces and work hardening occur. Therefore, in recent years, instead of producing new cutting tools that can withstand these difficult conditions, cryogenic process, which is a heat treatment method to increase the wear resistance and hardness of the cutting tool, has been applied. In this experimental study, feed force, surface roughness, vibration, cutting tool wear, hardness and abrasive wear values that occurred as a result of milling of Inconel 718 material by means of cryogenically treated and untreated cutting tools were investigated. Three different cutting speeds (35-45-55 m/min) and three different feed rates (0.02-0.03-0.04 mm/tooth) at constant depth of cut (0.2 mm) were used as cutting parameters in the experiments. As a result of the experiments, lower feed forces, surface roughness, vibration and cutting tool wear were obtained with cryogenically treated cutting tools. As the feed rate and cutting speed were increased, it was seen that surface roughness, vibration and feed force values increased. At the end of the experiments, it was established that there was a significant relation between vibration and surface roughness. However, there appeared an inverse proportion between abrasive wear and hardness values. While BUE did not occur during cryogenically treated cutting tools, it was observed that BUE occurred in cutting tools which were not cryogenically treated.


2017 ◽  
Vol 867 ◽  
pp. 165-170
Author(s):  
Isha Srivastava ◽  
Ajay Batish

The aim of this study were to evaluate the performance of PVD (TiAlN+TiN) and CVD (TiCN+Al2O3+TiN) coated inserts in end milling of EN–31 hardened die steel of 43±1 HRC during dry and MQL (Minimum quantity lubrication) machining. The experiments were conducted at a fixed feed rate, depth of cut and varying cutting speed to measure the effect of cutting speed on cutting force and tool wear of CVD and PVD-coated inserts. The performance of CVD and PVD-coated inserts under dry and MQL condition by measuring the tool wear and cutting force were compared. During cutting operation, it was noticed that PVD inserts provide less cutting force and tool wear as compared to the CVD inserts under both dry as well as the MQL condition because PVD inserts have a thin insert coating and CVD inserts have a thick insert coating, but PVD inserts experience catastrophic failure during cutting operation whereas CVD inserts have a capability for continuous machining under different machining. Tool wear has measured by SEM analysis. The result shows that MQL machining provides the optimum results as compared to the dry condition. MQL machining has the ability to work under high cutting speed. As the cutting speed increases the performance of dry machining was decreased, but in MQL machining, the performance of the inserts was increased with increases of cutting speed. MQL machining generates less cutting force on the cutting zone and reduces the tool wear which further increase the tool life.


Author(s):  
Emel Kuram

Tool coatings can improve the machinability performance of difficult-to-cut materials such as titanium alloys. Therefore, in the current work, high-speed milling of Ti6Al4V titanium alloy was carried out to determine the performance of various coated cutting tools. Five types of coated carbide inserts – monolayer TiCN, AlTiN, TiAlN and two layers TiCN + TiN and AlTiN + TiN, which were deposited by physical vapour deposition – were employed in the experiments. Tool wear, cutting force, surface roughness and chip morphology were evaluated and compared for different coated tools. To understand the tool wear modes and mechanisms, detailed scanning electron microscope analysis combined with energy dispersive X-ray of the worn inserts were conducted. Abrasion, adhesion, chipping and mechanical crack on flank face and coating delamination, adhesion and crater wear on rake face were observed during high-speed milling of Ti6Al4V titanium alloy. In terms of tool wear, the lowest value was obtained with TiCN-coated insert. It was also found that at the beginning of the machining pass TiAlN-coated insert and at the end of machining TiCN-coated insert gave the lowest cutting force and surface roughness values. No change in chip morphology was observed with different coated inserts.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Harun Gokce

Stainless steels with unique corrosion resistance are used in applications with a wide range of fields, especially in the medical, food, and chemical sectors, to maritime and nuclear power plants. The low heat conduction coefficient and the high mechanical properties make the workability of stainless steel materials difficult and cause these materials to be in the class of hard-to-process materials. In this study, suitable cutting tools and cutting parameters were determined by the Taguchi method taking surface roughness and cutting tool wear into milling of Custom 450 martensitic stainless steel. Four different carbide cutting tools, with 40, 80, 120, and 160 m/min cutting speeds and 0.05, 0.1, 0.15, and 0.2 mm/rev feed rates, were selected as cutting parameters for the experiments. Surface roughness values and cutting tool wear amount were determined as a result of the empirical studies. ANOVA was performed to determine the significance levels of the cutting parameters on the measured values. According to ANOVA, while the most effective cutting parameter on surface roughness was the feed rate (% 50.38), the cutting speed (% 81.15) for tool wear was calculated.


Author(s):  
Abdullah Altin

In this research, we had studied the sensitivity for machining of cobalt-based superalloy Haynes 188 with ceramic cutting tool. The investigation had focused on the effects of the cutting speed, on the cutting forces, and on the surface roughness based on Taguchi’s experimental design. The effects of machining parameters were determined using Taguchi’s L27 orthogonal array. The signal-to-noise ratio was calculated for the average of surface roughness and the cutting forces, and the smaller were used to determine the optimal cutting conditions. The analysis of variance and the signal-to-noise ratio had effects on the parameters on both surface roughness and cutting. Three different types of cutting tools had been used in the experiment, namely KYON 4300, KYS 25, and KYS 30. The cutting force of Fz was considered to be the main cutting force. Depending on the material which had been used as cutting tool, the Fz had the lowest cutting speed and the lowest surface roughness with the KYS25 ceramic tool. The cutting force and the surface roughness of KYON 4300 cutting tool had shown better performance than other cutting tools. The flank wear and notch were found to be more effective in the experiments. The long chips were removed at low and medium cutting speeds, while the sawdust with one edge and narrow pitch at high cutting speeds was obtained.


2016 ◽  
Vol 861 ◽  
pp. 26-31 ◽  
Author(s):  
Peng Guo ◽  
Chuan Zhen Huang ◽  
Bin Zou ◽  
Jun Wang ◽  
Han Lian Liu ◽  
...  

The milling of AISI 321 stainless steel which has wide engineering applications particularly in automobile, aerospace and medicine is of great importance especially in the conditions where high surface quality is required. In this paper, L16 orthogonal array design of experiments was adopted to evaluate the machinability of AISI 321 stainless steel with coated cemented carbide tools under finish dry milling conditions, and the influence of cutting speed ( V ), feed rate ( f ) and depth of cut ( ap ) on cutting force, surface roughness and tool wear was analysed. The experimental results revealed that the cutting force decreased with an increase in the cutting speed and increased with an increase in the feed rate or the depth of cut. The tool wear was affected significantly by the cutting speed and the depth of cut, while the effect of the feed rate on the tool wear was insignificant. With the cutting speed increased up to 160 m/min, a decreasing tendency in the surface roughness was observed, but when the cutting speed was further increased, the surface roughness increased. The effect of the feed rate and the depth of cut on the surface roughness was slight.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2174 ◽  
Author(s):  
Zhaolong Zhu ◽  
Pingxiang Cao ◽  
Xiaolei Guo ◽  
Xiaodong (Alice) Wang ◽  
Fan Zhang ◽  
...  

In order to better provide a theoretical basis for the machining of luxury vinyl tiles, a helical milling experiment was conducted by using diamond cutting tools, and special attention was given to the trends of cutting force and surface roughness in respect to tool geometry and cutting parameters. The results showed that the resultant force was negatively correlated to the helix angle and cutting speed, but positively correlated with the cutting depth. Then, that the surface roughness increased with a decrease of the helix angle and an increase of cutting depth, while as cutting speed raised, the surface roughness first declined and then increased. Thirdly, the cutting depth was shown to have the greatest influence on both cutting force and surface roughness, followed by helix angle and cutting speed. Fourth, the contribution of cutting depth only was significant to cutting force, while both the helix angle and cutting speed had insignificant influence on the cutting force and surface roughness. Finally, the optimal cutting conditions were proposed for industrial production, in which the helix angle, cutting speed and cutting depth were 70°, 2200 m/min and 0.5 mm, respectively.


2020 ◽  
Vol 7 ◽  
pp. 27
Author(s):  
Sisira Kanta Pattnaik ◽  
Minaketan Behera ◽  
Sachidananda Padhi ◽  
Pusparaj Dash ◽  
Saroj Kumar Sarangi

Enormous developmental work has been made in synthesis of metastable diamond by hot filament chemical vapor deposition (HFCVD) method. In this paper, micro-crystalline diamond (MCD) was deposited on WC–6 wt.% Co cutting tool inserts by HFCVD technique. The MCD coated tool was characterized by the scanning electron microscope (SEM), X-ray diffraction (XRD) and micro Raman spectroscopy (μ-RS). A comparison was made among the MCD tool, uncoated tungsten carbide (WC) tool and polycrystalline diamond (PCD) tool during the dry turning of rolled aluminum. The various major tests were conducted such as surface roughness, cutting force and tool wear, which were taken into consideration to establish a proper comparison among the advanced cutting tools. Surface roughness was measured during machining by Talysurf. The tool wear was studied by SEM after machining. The cutting forces were measured by Kistler 3D-dynamometer during the machining process. The test results indicate that, the CVD coated MCD tool and PCD tool produced almost similar results. But, the price of PCD tools are five times costlier than MCD tools. So, MCD tool would be a better alternative for machining of aluminium.


Sign in / Sign up

Export Citation Format

Share Document