scholarly journals Investigation of Factors Influencing the Autoclave Tests Results of Internal Anticorrosive Polymer Coatings

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1713
Author(s):  
Mark Kovalev ◽  
Ekaterina Alekseeva ◽  
Nikita Shaposhnikov ◽  
Daniil Lyashenko ◽  
Vasiliy Tokarev

Polymer coatings are one of the most common methods for protecting metal structures from corrosion damage. For example, in the oil and gas industry, polymer coatings are used to protect the inner surfaces of oilfield pipelines. Forecasting the service life of the coating is an unsolved problem. Existing test methods allow to assess the quality of coating application and compliance with the declared properties, for example, resistance at a certain temperature, but do not allow to understand the expected service life or degradation dynamics. One solution to this problem may be the development of existing methods of autoclave testing of coatings with the addition of more criteria for assessing degradation. This paper considers the methodological features of autoclave testing with rapid pressure relief. The decompression autoclave test was considered from the point of view of the principles of its conduct and evaluation of test results. The tests were carried out in environments containing hydrogen sulfide and carbon dioxide. The main object of the tests was anticorrosive polymer powder coatings applied in industrial conditions. The work assessed the influence of the following factors on the test result: pressure relief time, test cycle, and coating quality. Attention was also paid to the evaluation methods; aside from the adhesion assessment, optical microscopy and the evaluation of the microhardness of coatings were used. As a result of the work carried out, it was shown that the pressure relief rate within 5 s affects the test results. An increase in micropores and a drop in the microhardness of coatings after cyclic autoclave tests were also shown. The method of assessing the degradation of coatings using microhardness also showed the convergence of the results with the traditional method of assessing adhesion. The results of the work can be used to modify the autoclave testing method and transition to resource forecasting.

Author(s):  
Karine Kutrowski ◽  
Rob Bos ◽  
Jean-Re´gis Piccardino ◽  
Marie Pajot

On January 4th 2007 TIGF published the following invitation for tenders: “Development and Provision of a Pipeline Integrity Management System”. The project was awarded to Bureau Veritas (BV), who proposed to meet the requirements of TIGF with the Threats and Mitigations module of the PiMSlider® suite extended with some customized components. The key features of the PiMSlider® suite are: • More than only IT: a real integrity philosophy, • A simple intuitive tool to store, display and update pipeline data, • Intelligent search utilities to locate specific information about the pipeline and its surrounding, • A scalable application, with a potentially unlimited number of users, • Supervision (during and after implementation) by experienced people from the oil and gas industry. This paper first introduces TIGF and the consortium BV – ATP. It explains in a few words the PIMS philosophy captured in the PiMSlider® suite and focuses on the added value of the pipeline Threats and Mitigations module. Using this module allows the integrity analyst to: • Prioritize pipeline segments for integrity surveillance purposes, • Determine most effective corrective actions, • Assess the benefits of corrective actions by means of what-if scenarios, • Produce a qualitative threats assessment for further use in the integrity management plan, • Optimize integrity aspects from a design, maintenance and operational point of view, • Investigate the influence of different design criteria for pipeline segments. To conclude, TIGF presents the benefits of the tool for their Integrity Management department and for planning inspection and for better knowledge of their gas transmission grid.


2021 ◽  
Author(s):  
Min Lin ◽  
Yang Liu

Abstract Corrosion is one of the most critical issues in the oil and gas industry, leading to severe environmental and economic problems. Due to the high cost and serious safety risk of corrosion, it is essential to improve current corrosion testing techniques to detect corrosion damages at an early stage. Guided wave tomography (GWT) demonstrates its great potential to inspect and quantify the corrosion damage. GWT is capable of determining the residual life of corrosion structures by quantifying the remaining wall thickness. In this paper, an accurate guided wave tomography technique incorporating full waveform inversion (FWI) and higher-order Lamb waves (A1 mode) is presented for plate-like structures, which is able to get high-resolution reconstruction results. The technique consists of three steps: forward modeling, velocity inversion and thickness reconstruction. The forward modeling is computed by solving the elastic full-wave equations in 2-D time domain by using the finite difference method. High-resolution phase velocity inversion can then be obtained by minimizing the waveform misfit function between simulated and recorded data using a second order optimization method, which updates the velocity model from low to high frequencies iteratively. Finally, the velocity variations can be transformed into depth profiles by using the dispersive characteristics of ultrasonic guided waves; therefore, the thickness reconstruction can be obtained. The numerical simulations are performed on an aluminum plate with a complicated corrosion defect. By comparing the thickness reconstruction maps using both A1 and A0 modes, the results demonstrate that FWI with A1 mode can achieve significantly better resolution of corrosion imaging than that with A0 mode.


Author(s):  
Casper Hadsbjerg ◽  
Kristian Krejbjerg

When the oil and gas industry explores subsea resources in remote areas and at high water depths, it is important to have advanced simulation tools available in order to assess the risks associated with these expensive projects. A major issue is whether hydrates will form when the hydrocarbons are transported to shore in subsea pipelines, since the formation of a hydrate plug might shut down a pipeline for an extended period of time, leading to severe losses. The industry practices a conservative approach to hydrate plug prevention, which is the addition of inhibitors to ensure that hydrates cannot form under pipeline pressure and temperature conditions. The addition of inhibitors to subsea pipelines is environmentally unfriendly and also a very costly procedure. Recent efforts has therefore focused on developing models for the hydrate formation rate (hydrate kinetics models), which can help determine how fast hydrates might form a plug in a pipeline, and whether the amount of inhibitor can be reduced without increasing the risk of hydrate plug formation. The main variables determining whether hydrate plugs form in a pipeline are: 1) the ratio of hydrocarbons to water, 2) the composition of the hydrocarbons, 3) the flowrates/flow regimes in the pipeline, 4) the amount of inhibitor in the system. Over the lifetime of a field, all 4 variables will change, and so will the challenge of hydrate plug prevention. This paper will examine the prevention of hydrate plugs in a pipeline, seen from a hydrate kinetics point of view. Different scenarios that can occur over the lifetime of a field will be investigated. Exemplified through a subsea field development, a pipeline simulator that considers hydrate formation in a pipeline is used to carry out a study to shed light on the most important issues to consider as conditions change. The information gained from this study can be used to cut down on inhibitor dosage, or possibly completely remove the need for inhibitor.


2017 ◽  
Author(s):  
Donald G. MacDiarmid ◽  
Sean J. Korney ◽  
Melanie Teetaert ◽  
Julie J.M. Taylor ◽  
Robert Martz ◽  
...  

Rights of first refusal and other preferential or pre-emptive rights (together, ROFRs, and individually a ROFR) routinely find their way into oil and gas industry agreements. Disputes often arise because of the complex nature and significant economic consequences of ROFRs. In recent years, a number of reported cases, either relating directly to ROFRs or more generally relating to contractual interpretation, have clarified (or at times muddied) the waters surrounding the use, application, and interpretation of ROFRs. However, most ROFR disputes never result in a reported decision because the parties typically negotiate solutions long before trial.The authors consider current trends involving ROFRs in oil and gas agreements, and how they believe the law and legal practice surrounding ROFRs might continue to evolve in the years to come. The authors do not attempt to rehash the fundamentals of the law surrounding ROFRs; instead, they focus on how the courts have dealt with ROFRs in recent cases as well as how corporate lawyers and in-house counsel grapple with ROFRs day-today. The authors utilize the ROFR provisions found in industry standard contracts to analyze outstanding areas of uncertainty as well as what lawyers should contemplate prior to including a ROFR in an agreement. Additionally, the article examines the implications of recent rulings on the duty of good faith that may affect ROFRs. Finally, the article considers selected subjects of topical interest, including ROFRs in the context of busted butterfly transactions, insolvency proceedings, and package deals.


2021 ◽  
Vol 87 (12) ◽  
pp. 36-41
Author(s):  
A. S. Fedorov ◽  
E. L. Alekseeva ◽  
A. A. Alkhimenko ◽  
N. O. Shaposhnikov ◽  
M. A. Kovalev

Carbon dioxide (CO2) corrosion is one of the most dangerous types of destruction of metal products in the oil and gas industry. The field steel pipelines and tubing run the highest risk. Laboratory tests are carried out to assess the resistance of steels to carbon dioxide corrosion. However, unified requirements for certain test parameters are currently absent in the regulatory documentation. We present the results of studying the effect of the parameters of laboratory tests on the assessment of the resistance of steels to CO2 corrosion. It is shown that change in the parameters of CO2 concentration, chemical composition of the water/brine system, the buffer properties and pH, the roughness of the sample surface, etc., even in the framework of the same laboratory technique, can lead in different test results. The main contribution to the repeatability and reproducibility of test results is made by the concentration of CO2, pH of the water/brine system, and surface roughness of the samples. The results obtained can be used in developing recommendations for the choice of test parameters to ensure a satisfactory convergence of the results gained in different laboratories, as well as in elaborating of a unified method for assessing the resistance of steels to carbon dioxide corrosion.


Author(s):  
Lisa M. Gieg ◽  
Mohita Sharma ◽  
Trevor Place ◽  
Jennifer Sargent ◽  
Yin Shen

Abstract Corrosion of carbon steel infrastructure in the oil and gas industry can occur via a variety of chemical, physical, and/or microbiological mechanisms. Although microbial corrosion is known to lead to infrastructure failure in many upstream and downstream operations, predicting when and how microorganisms attack metal surfaces remains a challenge. In crude oil transmission pipelines, a kind of aggressive corrosion known as under deposit corrosion (UDC) can occur, wherein mixtures of solids (sands, clays, inorganic minerals), water, oily hydrocarbons, and microorganisms form discreet, (bio)corrosive sludges on the metal surface. To prevent UDC, operators will use physical cleaning methods (e.g., pigging) combined with chemical treatments such as biocides, corrosion inhibitors, and/or biodispersants. As such, it necessary to evaluate the efficacy of these treatments in preventing UDC by monitoring the sludge characteristics and the microorganisms that are potentially involved in the corrosion process. The efficacies of a biocide, corrosion inhibitor, and biodispersant being used to prevent microbial corrosion in a crude oil transmission pipeline were evaluated. A combination of various microbiological analyses and corrosivity tests were performed using sludge samples collected during pigging operations. The results indicated that the combined treatment using inhibitor, biocide 1 and biodispersant was the most effective in preventing metal damage, and both growth-based and Next-Generation Sequencing approaches provided value towards understanding the effects of the chemical treatments. The efficacy of a different biocide (#2) could be discriminated using these test methods. The results of this study demonstrate the importance of considering and monitoring for microbial corrosion of crucial metal infrastructure in the oil and gas industry, and the value of combining multiple lines of evidence to evaluate the performance of different chemical treatment scenarios.


Author(s):  
Christiane L. Machado ◽  
Sudheer Chand

The Offshore Oil and Gas Industry has converted a large number of units from trading tankers and carriers into Floating Production, Storage and Offloading units (FPSOs). Several of these have been moored offshore Brazil during the last 15 years. Following the discovery of offshore pre-salt fields some years ago, demand for FPSOs has increased, and the forecasts for productive field lives have grown. The result of these developments is the need to extend the service lives of existing FPSOs. The main aim of this study is to investigate FPSO structural response to environmental conditions and functional loads, considering the actual available tools for numerical simulations and Rule requirements, which currently are basic requirements for design review for Classification. The procedure was developed from one selected FPSO converted from a trading Very Large Crude Carrier (VLCC) tanker approximately 15 years ago and includes investigation of the impact on hull behavior comparing the motion analyses of the production unit under environmental data and software capabilities available at the period of conversion and actual performance: variances in the environmental (sea scatter diagrams) datasets; updates to Classification requirements for defining offloading conditions, environmental loads, acceptance criteria and remaining fatigue life (RFL); and incorporating the most recent gauged thickness for primary structure. The selected FPSO was evaluated according to prescriptive Rule requirements and also using finite element analysis, taking into account the previous conditions of Classification approval as well as the actual requirements and available data. Structural analysis included one global model and some local refined models to address strength, buckling and fatigue capacity of the typical portions/connections of the hull. The comparisons performed from the results of these analyses are a crucial step toward understanding the structural capacity of the FPSO at the conversion stage, its performance during the last 15 years, and its remaining service life. Differences were tabulated and evaluated so that a more precise level of uncertainty could be achieved for predicting the estimated remaining service life, and consequently, a new and dedicated approach to investigate the existing FPSO fleet is being generated.


Author(s):  
Xian-Kui Zhu ◽  
Tom McGaughy

Abstract The low-constraint fracture toughness can be measured using a single edge-notched tension (SENT) specimen in the clamped-end conditions. The SENT specimen has been used in the oil and gas industry in the strain-based design and the crack assessment for transmission pipelines. Since 2006 when DNV published the first SENT test practice, many investigations have been done, and various SENT test methods were developed, including CANMET and ExxonMobil methods in terms of the J-integral and CTOD. The effort led to the first SENT test standard BS 8571 being published in 2014. However, the experimental evaluation methods remain in developing, and different methods may determine inconsistent results. For this reason, the present paper gives a brief review on SENT fracture testing and assesses the available test methods, including progresses on study of stress intensity factor, geometric eta factors, elastic compliance equation, and constraint m factor as well. The difference between J-converted CTOD and double clip gage measured CTOD is also discussed. On those bases, agreements and challenges in SENT testing are identified. The results provide a direction for further investigation to improve the current SENT test methods.


NDT World ◽  
2020 ◽  
pp. 5-8
Author(s):  
Aleksandr Kazachenko

Composite materials appear to be an ideal solution to a complex problem with conflicting conditions: how to simultaneously obtain sufficient strength, reliability and durability of the structure, while providing the minimum possible mass of it. However, non-destructive testing of products from them raises more and more questions. In the mass production of composite pipes for pipelines, the only possible option from the point of view of ensuring the necessary reliability, information capacity of the results of the performed inspection of products and productivity is the automation of the inspection process, which includes special methods for identifying defects. Statistical methods, including capability ratio and Shewhart control charts, should be used to estimate the error in determining the size of defects.


Author(s):  
V. T. Trofimov ◽  
A. V. Nikolaev ◽  
A. D. Zhigalin ◽  
T. A. Baraboshkina ◽  
M. A. Kharkina ◽  
...  

Oil and gas industry shows the danger of this kind of industry, including from the environmental point of view. Entering the waters of marginal seas and ocean significantly aggravated the situation, moving a significant part of the emergency situations related to hydrocarbon production, the level of regional and global. The use of new technologies in the production of shale hydrocarbons added new problems - the total probability of contamination of large amounts of geological space highly toxic chemicals. Tracking down of a new perspective mineral energy source - gas hydrates - allows to plan only while possible passing dangers, but shows, that the ecological risk can many times more. For opposition to threat of occurrence of emergencies in connection with growth of extraction of hydrocarbons expediently creation at a national level of special structures of the control and fast reaction. Such structures can be if necessary opened for the international cooperation, and are entered into jurisdiction of the United Nations Organization.


Sign in / Sign up

Export Citation Format

Share Document