scholarly journals A Novel Alloy Development Approach: Biomedical Equiatomic Ta-Nb-Ti Alloy

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1778
Author(s):  
Maximilian Regenberg ◽  
Janett Schmelzer ◽  
Georg Hasemann ◽  
Jessica Bertrand ◽  
Manja Krüger

In the present manuscript, we report on the properties of an equiatomic Ta-Nb-Ti alloy as the basis for a novel, biomedical, multi-component alloy development. The alloy was produced using an arc melting furnace under Ar atmosphere, metallographically prepared, and investigated respectively. Furthermore, the alloy produced, as well as samples of elemental Ta, Nb, alloy Co-28Cr-6Mo, and alloy Ti-6Al-4V, were prepared with defined 1200 grit SiC grinding paper. The topography of the surfaces was evaluated using confocal microscopy and contact angle measurements subsequently. Afterwards, the biocompatibility of the novel alloy Ta-Nb-Ti was evaluated by means of cell (osteoblast) attachment as well as monocyte inflammatory response analysis. First results indicate competitive osteoblast attachment, as well as comparable expressions of fibrosis markers in comparison to conventionally used biomedical materials. In addition, the Ta-Nb-Ti alloy showed a markedly reduced inflammatory capacity, indicating a high potential for use as a prospective biomedical material.

RSC Advances ◽  
2015 ◽  
Vol 5 (11) ◽  
pp. 8355-8361 ◽  
Author(s):  
Chunxiang Cui ◽  
Ling Bai ◽  
Shuangjin Liu ◽  
Yumin Qi ◽  
Lichen Zhao

In the experiment, Ti75Zr11Si9Fe5 and Ti66Zr11Si15Fe5Mo3 ingots were prepared by vacuum arc-melting furnace.


2016 ◽  
Vol 869 ◽  
pp. 930-934
Author(s):  
Cristiane Mayumi Wada ◽  
André Luiz Reis Rangel ◽  
Marisa Aparecida de Souza ◽  
Rosemeire dos Santos Almeida ◽  
Marcos Akira D’Ávila ◽  
...  

In this study, PCL electrospun fibers were deposited on the Ti-30Ta alloy for change the surface properties. Experimental Ti-30Ta alloy was obtained by melting titanium and tantalum in arc melting furnace with argon atmosphere. Ingots were homogenized and bars with 10 mm of diameter were obtained in rotative swagging. PCL fibers were deposited on disks of the alloy by electrospinning. Plasma treatment was carried out for change PCL electrospun superficial energy by using stainless steel plasma reactor. Samples were immersed in mineralization solution for apatite growth. Surfaces were evaluated by using SEM, X-rays diffraction and contact angle. Samples exhibited hydrophilic behavior after plasma treatment and mineralization. Results are very interesting for biomedical applications.


2011 ◽  
Vol 172-174 ◽  
pp. 190-195 ◽  
Author(s):  
Giorgia T. Aleixo ◽  
Eder S.N. Lopes ◽  
Rodrigo Contieri ◽  
Alessandra Cremasco ◽  
Conrado Ramos Moreira Afonso ◽  
...  

Ti-based alloys present unique properties and hence, are employed in several industrial segments. Among Ti alloys, β type alloys form one of the most versatile classes of materials in relation to processing, microstructure and mechanical properties. It is well known that heat treatment of Ti alloys plays an important role in determining their microstructure and mechanical behavior. The aim of this work is to analyze microstructure and phases formed during cooling of β Ti-Nb-Sn alloy through different cooling rates. Initially, samples of Ti-Nb-Sn system were prepared through arc melting furnace. After, they were subjected to continuous cooling experiments to evaluate conditions for obtaining metastable phases. Microstructure analysis, differential scanning calorimetry and X-ray diffraction were performed in order to evaluate phase transformations. Depending on the cooling rate and composition, α” martensite, ω phase and β phase were obtained. Elastic modulus has been found to decrease as the amount of Sn was increased.


2021 ◽  
Vol 21 (7) ◽  
pp. 3753-3758
Author(s):  
Hyun-Jun Kim ◽  
Han-Cheol Choe

In this study, plasma electrolytic oxidation (PEO) on Ti–xNb–2Ag–2Pt alloys for nano- and micro-pore formation in electrolyte with Ca and P ions for dental implant use was studied using various experimental equipment. The Ti–xNb–2Ag–2Pt alloys were fabricated using a vacuum arc melting furnace, and micro-pores were created through PEO-treatment in an electrolyte containing Ca and P ions. The PEO-treated surface was observed by X-ray diffractometer (XRD), field-emission scanning electron microscopy, and energy dispersive X-ray spectroscopy (EDS). The microstructure of Ti– xNb–2Ag–2Pt alloys showed the transformation of needle-like structure to equiaxed structure, as Nb content increased. Adding small amounts of Ag and Pt to Ti–xNb alloys, microstructure was not observed the significantly difference compared to Ti–xNb. The nano- and micro-pore sizes increased as the Nb content increased after PEO-treatment of Ti-xNb. In the case of Ti–50Nb–2Ag–2Pt, groove structure was observed, also the Ca/P ratio increased as the Nb content increased. The oxide layer thickness of Ti–xNb–2Ag–2Pt alloys was increased, as the Nb content increased.


MRS Advances ◽  
2019 ◽  
Vol 4 (25-26) ◽  
pp. 1427-1433
Author(s):  
O. Stryzhyboroda ◽  
U. Hecht ◽  
V. T. Witusiewicz ◽  
G. Laplanche ◽  
A. Asabre ◽  
...  

ABSTRACTWe present a high entropy alloy (HEA) from the system Al-Co-Cr-Fe-Ni with small additions of W, Mo, Si and C which was designed to allow for precipitation hardening by annealing in the temperature range from 600 to 900 °C. The alloy development was supported by thermodynamic computations using ThermoCalc software and the specimens were produced by arc melting. The microstructure of one selected sample in as-cast and annealed conditions was analysed using SEM/EDS, SEM/EBSD and TEM. The as-cast microstructure consists of spinodally decomposed BCC dendrites enveloped by FCC+Cr23C6 eutectic. Upon annealing at 700 °C for 24 h nanoscale precipitates form within the spinodal BCC as well as from FCC. Precipitation is exquisitely uniform leading to an increase in microhardness from 415 HV0.5 in the as-cast state to 560 HV0.5 after annealing. We investigated coarsening of this microstructure using varying holding time for a constant temperature of 700 °C. The microstructure evolution during coarsening and the corresponding mechanical properties obtained from instrumented indentation experiments are presented in this work.


2019 ◽  
Vol 288 ◽  
pp. 27-36
Author(s):  
Li Juan Zhao ◽  
Xiao Tian ◽  
Zhan Quan Yao ◽  
Xuan Zhao ◽  
Ojiyed Tegus

As-cast (Fe0.83Ga0.17)100-xYx (x=0, 3, 6 and 9) alloys were prepared by non-consumable vacuum arc melting furnace under a protective argon atmosphere. The crystal structures and surface morphologies of the alloys were studied by X-ray diffraction (XRD), optical microscope (OM) and scanning electron microscopy (SEM), combined with energy dispersive spectroscopy (EDS), respectively. The surface domain structures were observed by atomic force microscopy (AFM). The magnetostriction coefficients of the alloys were measured by strain gauging method. The results showed that the as-cast Fe83Ga17 alloy was composed only of a single phase of A2 with bcc structure, whereas the ternary Fe-Ga-Y alloys contain multiphase structure, besides the A2 phase, (FeGa)17Y1.76 new phases are observed as well, and an elemental yttrium phase appeared when the yttrium content increased to x=6 and x=9. Doping with yttrium have an effect on the change of magnetic domain structure of the binary alloy. With increasing x, the magnetostriction coefficient of the (Fe0.83Ga0.17)100-xYx alloys decreased sharply. The minimum magnetostriction coefficient is reduced to 12 ppm at the magnetic field of 426kA/m when x=9.


Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 136 ◽  
Author(s):  
Víctor Aranda ◽  
Ignacio Figueroa ◽  
Gonzalo González ◽  
J. García-Hinojosa ◽  
Gabriel Lara-Rodríguez

The Al–Si–Fe system has drawn the attention of the scientific community due to its capacity to replace parts in several manufacturing industries, as this alloy system is very sensitive to small additions of transition metals. Therefore, the aim of this work is to study the effect of Cr, Ti, and Mn additions in the Al–20Si–5Fe (wt. %) alloy and to study the modification of the iron intermetallic and the microstructural refinement through the formation of secondary phases. Al–20Si–5Fe–X (X = Cr, Mn and Ti at 1.0, 3.0, and 5.0 wt. %) alloy ingots were prepared by arc melting furnace. The elemental chemical analysis was performed by X-ray fluorescence spectrometry (XRF). The microstructure of all samples was investigated by scanning electron microscopy and X-ray diffraction. Finally, microhardness was measured in order correlate the hardness with the formation of the different compounds. The highest hardness was found for the alloy with the 5 wt. % Cr. The addition of Ti and Mn raised the hardness by ~35 HVN (Vickers microhardness) when compared to that of AlSiFe master alloy. Important changes were also observed in the microstructure. Depending on the Cr, Ti, and Mn additions, the resulting microstructure was dendritic (CrFe), acicular (Ti5Si3), and “bone like” (Mn0.2Fe0.8), respectively.


2011 ◽  
Vol 66 (12) ◽  
pp. 1241-1247
Author(s):  
Patrick R.N. Misse ◽  
Richard Dronskowski ◽  
Boniface P. T. Fokwa

Powder samples and single crystals of the boride phases MxRh7−xB3 (M = Cr,Mn, Ni; x ≤ 1) have been synthesized from the elements using an arc-melting furnace under purified argon atmosphere in a water-cooled copper crucible. The new phases were characterized from single-crystal and powder X-ray diffraction, as well as semi-quantitative EDX measurements. The obtained phases crystallize in the hexagonal Th7Fe3 structure type (space group P63mc, no. 186, Z = 2). In all cases (M = Cr, Mn, Ni), M is found to preferentially mix with rhodium at only one (6c) of the three available rhodium positions. Pauli paramagnetism was observed in CrxRh7−xB3 (x < 1), whereas both Pauli and temperature-dependent paramagnetisms were found in NiRh6B3.


1999 ◽  
Vol 54 (7) ◽  
pp. 863-869 ◽  
Author(s):  
Markus F. Zumdick ◽  
Rainer Pöttgen

The stannides LnRu4Sn6 (Ln = La, Pr, Nd, Sm, Gd) were prepared by reaction of the elements in an arc-melting furnace and subsequent annealing at 1120 K. The praseodymium, the neodymium, and the samarium stannide were obtained for the first time. The LnRu4Sn6 stannides were investigated by X-ray diffraction both on powders and single crystals. They adopt the YRu4Sn6 type structure which was refined from single crystal X-ray data for the samarium and the gadolinium compound: I4̄2m, a = 686.1 (1), c = 977.7(2) pm, wR2 = 0.0649, 483 F2 values for SmRu4Sn6, and a = 685.2(1), c = 977.6(3) pm, wR2 = 0.0629, 554 F2 values for GdRu4Sn6 with 19 variables for each refinement. The striking structural motif of these stannides are distorted RuSn6 octahedra with Ru-Sn distances ranging from 257 to 278 pm. Four of such octahedra are condensed via common edges and faces forming [Ru4Sn6] units which are packed in a tetragonal body-centered arrangement. The rare-earth atoms fill the voids between the [Ru4Sn6] units. Based on an extended Hückel calculation, strong bonding interactions were found for the Ru-Sn and the various Sn-Sn contacts.


2012 ◽  
Vol 476-478 ◽  
pp. 329-333
Author(s):  
Zhi Ying Ma ◽  
Yi Tao Yang

The effect of Mo and Ni content on the mechanical properties of low carbon and alloy casting steel by using Vacuum Arc Melting Furnace had been studied in this paper. The results indicated that increasing Mo or Ni content would enhance the hardness and strength of the steel separately, with some of elongation loss. It showed that ferrite refined with the increasing alloy content. The combinations of Mo and Ni content were of importance for comprehensive mechanical properties and wear resistance. The appropriate content in low carbon casting steel with 0.02%Nb was 0.5%-0.6%Mo and 0.2%-0.4%Ni.


Sign in / Sign up

Export Citation Format

Share Document