scholarly journals Weld Formation in Laser Hot-Wire Welding of 7075 Aluminum Alloy

Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 909 ◽  
Author(s):  
Shichun Li ◽  
Wei Xu ◽  
Gang Xiao ◽  
Bing Chen

The laser hot-wire welding process was adopted to weld 7075 high-strength aluminum alloy. The influence laws of parameters on the weld formation were analyzed during laser hot-wire welding, and the microstructure characteristics and mechanical properties of welds were analyzed. The results showed that the parameters whose significance of influence on weld formation as ranked from high to low were laser power, current, gap width, welding speed and wire feeding rate. With the increase of wire temperature, the weld formation quality became better initially and then worse. Under the condition of optimized parameters, good weld formation could be obtained. The weld zone had a fine grain microstructure, and was in casting state consisted of dendritic crystal and equiaxed crystal. The heat affected zone mainly consisted of columnar crystal. The microhardness decreased gradually from base metal to heat affected zone then to weld zone. The tensile fracture of weld specimen occurred at the weld zone, and was in the ductile fracture state. The tensile strength of weld joint was 206 MPa and was 64.2% of base metal strength.

2019 ◽  
Vol 38 (2019) ◽  
pp. 317-325 ◽  
Author(s):  
Zhicheng Wei ◽  
Rongzheng Xu ◽  
Hui Li ◽  
Yanxi Hou ◽  
Xuming Guo

AbstractFour-millimeter thick A7N01-T4 aluminum alloy plates were welded by double wire metal inert gas welding (DWMW) in high welding speeds, ranging from 1100 to 1250 mm/min. The results show that a sound joint could be obtained at a high speed of 1200 mm/min using DWMW. The weld zone (WZ) in the joint showed a dendritic structure of equiaxed grains, and in the fusion zone (FZ), the microstructure existed as a fine equiaxed crystal structure about 100 µm in thickness. In the WZ adjacent to the FZ, elongated columnar crystal structure distributed along to the interface, and coarse microstructure in the heat affected zone (HAZ) were found, showing a typical rolling texture. The main precipitates in the WZ were assumed to be Fe-enriched phases, and Mg- and Zn-enriched phases. Tensile fracture generally occurred in the WZ adjacent to the FZ with a decrease in ductility, and it was consistent with the results of the microstructure analysis and hardness profile. The mean ultimate tensile strength and elongation of specimens were 302 MPa and 4.5 %, respectively.


2017 ◽  
Vol 17 (2) ◽  
pp. 29-40 ◽  
Author(s):  
M. A. Tashkandi ◽  
J. A. Al-Jarrah ◽  
M. Ibrahim

AbstractThe main aim of this investigation is to produce a welding joint of higher strength than that of base metals. Composite welded joints were produced by friction stir welding process. 6061 aluminum alloy was used as a base metal and alumina particles added to welding zone to form metal matrix composites. The volume fraction of alumina particles incorporated in this study were 2, 4, 6, 8 and 10 vol% were added on both sides of welding line. Also, the alumina particles were pre-mixed with magnesium particles prior being added to the welding zone. Magnesium particles were used to enhance the bonding between the alumina particles and the matrix of 6061 aluminum alloy. Friction stir welded joints containing alumina particles were successfully obtained and it was observed that the strength of these joints was better than that of base metal. Experimental results showed that incorporating volume fraction of alumina particles up to 6 vol% into the welding zone led to higher strength of the composite welded joints as compared to plain welded joints.


2014 ◽  
Vol 22 (1) ◽  
pp. 93-98
Author(s):  
Pavol Švec ◽  
Viliam Hrnčiar ◽  
Alexander Schrek

AbstractThe effects of beam power and welding speed on microstructure, microhardnes and tensile strength of HCT600X laser welded steel sheets were evaluated. The welding parameters influenced both the width and the microstructure of the fusion zone and heat affected zone. The welding process has no effect on tensile strength of joints which achieved the strength of base metal and all joints fractured in the base metal.


Author(s):  
W. L. Costin ◽  
I. H. Brown ◽  
L. Green ◽  
R. Ghomashchi

Hydrogen assisted cold cracking (HACC) is a welding defect which may occur in the heat affected zone (HAZ) of the base metal or in the weld metal (WM). Initially the appearance of HACC was associated more closely with the HAZ of the base metal. However, recent developments in advanced steel processing have considerably improved the base material quality, thereby causing a shift of HACC to the WM itself. This represents a very serious problem for industry, because most of the predictive methods are intended for prevention of HACC in the HAZ of the base metal, not in the weld metal [1]. HACC in welded components is affected by three main interrelated factors, i.e. a microstructure, hydrogen concentration and stress level [2–4]. In general, residual stresses resulting from the welding process are unavoidable and their presence significantly influences the susceptibility of weld microstructures to cracking, particularly if hydrogen is introduced during welding [5]. Therefore various weldability tests have been developed over the years which are specifically designed to promote HACC by generating critical stress levels in the weld metal region due to special restraint conditions [4, 6–8]. These tests were used to develop predictive methods based on empirical criteria in order to estimate the cracking susceptibility of both the heat-affected zone and weld metal [4]. However, although the relationship between residual stress, hydrogen and HACC has received considerable attention, the interaction of residual stresses and microstructure in particular at microscopic scales is still not well understood [5, 9–21]. Therefore the current paper focuses on the development and assessment of techniques using Focused Ion Beam (FIB), Scanning Electron Microscopy (SEM) and Electron Backscatter Diffraction for the determination of local residual strains at (sub) micron scales in E8010 weld metal, used for the root pass of X70 pipeline girth welds, and their relationship to the WM microstructure. The measurement of these strains could be used to evaluate the pre-existing stress magnitudes at certain microstructural features [22].


1996 ◽  
Vol 118 (4) ◽  
pp. 292-299 ◽  
Author(s):  
L. Malik ◽  
L. N. Pussegoda ◽  
B. A. Graville ◽  
W. R. Tyson

The awareness of the presence of local brittle zones (LBZs) in the heat-affected zone (HAZ) of welds has led to the requirements for minimum initiation (CTOD) toughness for the HAZ for critical applications (API RP 2Z, CSA S473). Such an approach, however, is expensive to implement and limits the number of potential steel suppliers. A fracture control philosophy that is proposed to be an attractive alternative for heat-affected zones containing LBZs is the prevention of crack propagation rather than of crack initiation. Such an approach would be viable if it could be demonstrated that cracks initiated in the LBZs will be arrested without causing catastrophic failure, notwithstanding the low initiation (CTOD) toughness resulting from the presence of LBZs. Unstable propagation of a crack initiating from an LBZ requires the rupture of tougher microstructural regions surrounding the LBZ in HAZ, and therefore the CTOD value reflecting the presence of LBZ is unlikely to provide a true indication of the potential for fast fracture along the heat-affected zone. Base metal specifications (CSA S473) usually ensure that small unstable cracks propagating from the weld zone into the base metal would be arrested. Past work has also shown that unstable crack initiation resulting from interaction of surface semi-elliptical cracks parallel to the fusion boundary with the local brittle zones can get arrested once the crack has popped through the depth of the LBZ. However, the potential for arrest when a through-thickness HAZ crack runs parallel to the fusion boundary, and thus parallel to the LBZs, has not been examined previously. To investigate the likelihood of fast fracture within the HAZ, a test program has been carried out that involved performing compact plane strain (ASTM E1221) and plane stress crack arrest tests on a heataffected zone that contained LBZs, and thus exhibited unacceptable low CTOD toughness for resistance to brittle fracture initiation. The results indicated that in contrast to the initiation toughness (CTOD toughness), the crack arrest toughness was little influenced by the presence of local brittle zones. Instead, the superior toughness of the larger proportion of finer-grain HAZ surrounding the LBZ present along the crack path has a greater influence on the crack arrest toughness. It further seems that there may be potential to estimate the HAZ crack arrest toughness from more conventional smaller-scale laboratory tests, such as conventional or precracked instrumented Charpy impact tests.


2005 ◽  
Vol 488-489 ◽  
pp. 371-376 ◽  
Author(s):  
Gang Song ◽  
Li Ming Liu ◽  
Mingsheng Chi ◽  
Ji Feng Wang

This paper presents results of recent investigations on the weldability of several wrought (AZ31, AZ61) and cast magnesium-based alloys (AZ91) by laser-TIG welding process. The investigations showed that magnesium alloys can be easily welded by laser-TIG welding. The grain of the fusion zone was finer than that of in base metal. The width of the heat-affected zone welded by laser-TIG welding process was obviously narrower than that of welded by TIG. Besides, with the Al content of magnesium alloys increasing, the width of the heat-affected zone (HAZ) was increased,as well as the content of β phase(Mg17Al12). The hardness in the fusion zone (FZ) and in HAZ of AZ61 and AZ91 has a large change to the base metal due to the existing of β phase, while no change relative for AZ31. It results from above discussing that laser-TIG welding is an excellent welding process for magnesium alloys.


Author(s):  
Ngo Huu Manh ◽  
Nguyen Van Anh ◽  
Murata Akihisa ◽  
Hideno Terasaki

A study about influence of heat input on welding defects in vertical upward welding position for dissimilar material and thickness using a new variation of TIG welding torch is done with support of advanced inspection methods SEM and EBSD. With vertical upward welding position, control heat input plays an important role to keep the weld stabilization without defects. On the other hand, TIG welding process using a conventional TIG torch (conventional TIG welding process) has low efficiency and it is difficult to control heat input with high accuracy. So, it is considered that using conventional TIG torch is still a challenge for welding thin plates. In this case, a new variation of TIG torch has been developed. This torch used a constricted nozzle to improve plasma arc characteristics. As a result, it can control efficiently the heat input to prevent the excessive or insufficiency for joining thin sheets. For evaluation of welding quality, advanced examination methods SEM and EBSD were applied to directly observe the welding defects. From the results, the formation mechanism of blowhole inside weld zone in case of welding dissimilar material and thickness was discussed. It is pointed out that when sufficient welding current, the change from weld zone to base metal is uniform, no welding defects such as blowhole was seen. However, in case of low welding current, the thinner base metal is insufficient fusion and the change between weld zone and base metal is not uniform. The blowhole was observed at SS400 material side.


2017 ◽  
Vol 5 (2) ◽  
Author(s):  
Made Angga Priadi ◽  
I Nyoman Pasek Nugraha ◽  
Gede Widayana

Media pendingin merupakan suatu substansi yang berfungsi dalam menentukan kecepatan pendinginan yang dilakukan terhadap material yang telah diuji dalam perlakuan panas. Penelitian ini bertujuan untuk mengetahui tingkat kekerasan dan pengamatan struktur mikro material baja ST-37 yang dipengaruhi media pendinginan air, udara dan oli serta penelitian ini dapat memberikan bahan referensi bagi lingkup pendidikan teknik mesin dan sebagai acuan di dunia industri dalam menggunakan media pendingin pada proses pengelasan. Adapun jenis metode yang digunakan dalam penelitian ini adalah metode penelitian eksperimen. Terdapat dua jenis variable yang digunakan dalam penelitian ini yaitu variabel bebas yang berupa media pendingin air, media pendingin udara dan media pendingin oli dan variabel terikatnya berupa sifat kekerasan. Dari hasil penelitian yang telah dilakukan dimana kekerasan daerah logam induk dengan media pendingin air memperoleh nilai rata-rata sebesar 63,10 Kg/mm2, pendingin udara memperoleh nilai rata-rata sebesar 65,61 Kg/mm2, dan media pendingin oli memperoleh nilai rata-rata sebesar 62,68 Kg/mm2. Kekerasan pada daerah HAZ dengan media pendingin air memperoleh nila rata-rata sebesar 68,49 Kg/mm2, media pendingin udara memperoleh nilai rata-rata sebesar 71,05 Kg/mm2 dan media pendingin oli memperoleh nilai rata-rata sebesar 70,34 Kg/mm2. Kekerasan pada daerah logam las dengan media pendingin air memperoleh nilai rata-rata sebesar 60,99 Kg/mm2, media pendingin udara memperoleh nilai rata-rata sebesar 61,79 Kg/mm2 dan media pendingin oli memperoleh nilai rata-rata sebesar 60,79 Kg/mm2. Berdasarkan dari hasil yang telah didapatkan baik pada logam induk, daerah HAZ dan logam Las dimana tingkat kekerasan yang lebih baik diperoleh dari proses pendinginan udara dibandingkan dengan media pendingin air dan media pendingin oli dari proses pengelasan oxy acytelene.Kata Kunci : Baja ST-37, Kekerasan Material, media pendinginan. The cooling media is a substance which has a function to determine the speed refrigeneration which carried out of the material that has been tasted by heat treatment. The objective of the research is to know the level of hardness and the observation of steel ST-37 material which is affected by cooling media such as water, air, and oil. Also this research may give a reference for Engineering Department of Education and industry in using cooling media for welding process. There is a method that use in this research, that is called quantitative research. There are two variables that use in this research. Independent variable and dependent variable. An independent variable are water, air, and oil cooling media. On the other hand, a dependent variable is nature of hardness. In this research the researcher got a results where the mean of hardness of the base metal area with the water cooling media is 63.10 Kg/mm2, in air conditioning is 61Kg/mm2, and the oil cooling is 62.68 Kg/mm2. The mean of a hardness in Heat Affected Zone (HAZ) by water cooling media 68,49 Kg/mm2, air cooling media is 71,05 Kg/mm2 and an air cooling is 70,34 Kg/mm2. The mean of Hardness in the weld metal area with water cooling media is 60,99 Kg/mm2, air-cooling media is 61,79 Kg/mm2 and oil-cooling media is 60,79Kg/mm2. Based on the result which has been gotten from base metal, Heat Affected Zone (HAZ), and weld metal where the best hardness level is obtained from air-cooling process rather than water cooling media and oil cooling media from oxy acytelene welding process.keyword : Cooling media, steel ST-37, hardness properties.


Author(s):  
Yurianto ◽  
Gunawan Dwi Haryadi ◽  
Sri Nugroho ◽  
Sulardjaka ◽  
Susilo Adi Widayanto

The heating and cooling at the end of the welding process can cause residual stresses that are permanent and remain in the welded joint. This study aims to evaluate the magnitude and direction of residual stresses on the base metal and heat-affected zone of rail joints welded by the manual shielded metal arc and thermite welding. This research supports the feasibility of welding for rail. The material used in this study is the R-54 rail type, and the procedure used two rail samples of one meter long each, welded using manual shielded metal arc welding and thermite welding. The base metal and heat-affected zone of the welded joints were scanned with neutron ray diffraction. The scan produces a spectrum pattern and reveals the direction of the residual stress along with it. We found the strain value contained in both types of welded joints by looking at the microstrain values, which we obtained using the Bragg equation. The results show that the magnitude and direction of the residual stress produced by manual shielded metal arc welding and thermite welding are not the same. Thermite welding produces lower residual stress (lower crack susceptibility) than manual shielded metal arc welding. The melt's freezing starts from the edge to the center of the weld to create random residual stresses. The residual stress results of both the manual shielded metal arc welding and thermite welding are still below the yield strength of the base metal.


Sign in / Sign up

Export Citation Format

Share Document