scholarly journals Multi-Omics Revealing the Response Patterns of Symbiotic Microorganisms and Host Metabolism in Scleractinian Coral Pavona minuta to Temperature Stresses

Metabolites ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 18
Author(s):  
Jiayuan Liang ◽  
Wenwen Luo ◽  
Kefu Yu ◽  
Yongqian Xu ◽  
Jinni Chen ◽  
...  

Global climate change has resulted in large-scale coral reef decline worldwide, for which the ocean warming has paid more attention. Coral is a typical mutually beneficial symbiotic organism with diverse symbiotic microorganisms, which maintain the stability of physiological functions. This study compared the responses of symbiotic microorganisms and host metabolism in a common coral species, Pavona minuta, under indoor simulated thermal and cold temperatures. The results showed that abnormal temperature stresses had unfavorable impact on the phenotypes of corals, resulting in bleaching and color change. The compositions of symbiotic bacteria and dinoflagellate communities only presented tiny changes under temperature stresses. However, some rare symbiotic members have been showed to be significantly influenced by water temperatures. Finally, by using ultra-performance liquid chromatography tandem mass spectrometry (UPLC–MS) method, we found that different temperature stresses had very different impacts on the metabolism of coral holobiont. The thermal and cold stresses induced the decrease of anti-oxidation metabolites, several monogalactosyldiacylglycerols (MGDGs), and the increase of lipotoxic metabolite, 10-oxo-nonadecanoic acid, in the coral holobiont, respectively. Our study indicated the response patterns of symbiotic microorganisms and host metabolism in coral to the thermal and cold stresses, providing theoretical data for the adaptation and evolution of coral to a different climate in the future.

2021 ◽  
pp. 963-968
Author(s):  
Dan Wu ◽  
Hui Kong

Biological and ecological environment in the plateau climate warming, abiotic environmental factors to different degrees of change were summed up from the macroscopic level to microcosmic individual physiological level of global climate change response model. The study summarized the research achievements at home and abroad, pointed out the plant phenology, photosynthesis, nutrient structure and presents different response patterns. These different response modes, from micro to macro, will eventually lead to changes in the structure and function of the Plateau ecosystem. This will threaten the survival and development of the Plateau plants on a large scale. Finally, the future research emphases in this field would be prospected. Bangladesh J. Bot. 50(3): 963-968, 2021 (September) Special


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 811
Author(s):  
Yaqin Hu ◽  
Yusheng Shi

The concentration of atmospheric carbon dioxide (CO2) has increased rapidly worldwide, aggravating the global greenhouse effect, and coal-fired power plants are one of the biggest contributors of greenhouse gas emissions in China. However, efficient methods that can quantify CO2 emissions from individual coal-fired power plants with high accuracy are needed. In this study, we estimated the CO2 emissions of large-scale coal-fired power plants using Orbiting Carbon Observatory-2 (OCO-2) satellite data based on remote sensing inversions and bottom-up methods. First, we mapped the distribution of coal-fired power plants, displaying the total installed capacity, and identified two appropriate targets, the Waigaoqiao and Qinbei power plants in Shanghai and Henan, respectively. Then, an improved Gaussian plume model method was applied for CO2 emission estimations, with input parameters including the geographic coordinates of point sources, wind vectors from the atmospheric reanalysis of the global climate, and OCO-2 observations. The application of the Gaussian model was improved by using wind data with higher temporal and spatial resolutions, employing the physically based unit conversion method, and interpolating OCO-2 observations into different resolutions. Consequently, CO2 emissions were estimated to be 23.06 ± 2.82 (95% CI) Mt/yr using the Gaussian model and 16.28 Mt/yr using the bottom-up method for the Waigaoqiao Power Plant, and 14.58 ± 3.37 (95% CI) and 14.08 Mt/yr for the Qinbei Power Plant, respectively. These estimates were compared with three standard databases for validation: the Carbon Monitoring for Action database, the China coal-fired Power Plant Emissions Database, and the Carbon Brief database. The comparison found that previous emission inventories spanning different time frames might have overestimated the CO2 emissions of one of two Chinese power plants on the two days that the measurements were made. Our study contributes to quantifying CO2 emissions from point sources and helps in advancing satellite-based monitoring techniques of emission sources in the future; this helps in reducing errors due to human intervention in bottom-up statistical methods.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mateusz Taszarek ◽  
John T. Allen ◽  
Mattia Marchio ◽  
Harold E. Brooks

AbstractGlobally, thunderstorms are responsible for a significant fraction of rainfall, and in the mid-latitudes often produce extreme weather, including large hail, tornadoes and damaging winds. Despite this importance, how the global frequency of thunderstorms and their accompanying hazards has changed over the past 4 decades remains unclear. Large-scale diagnostics applied to global climate models have suggested that the frequency of thunderstorms and their intensity is likely to increase in the future. Here, we show that according to ERA5 convective available potential energy (CAPE) and convective precipitation (CP) have decreased over the tropics and subtropics with simultaneous increases in 0–6 km wind shear (BS06). Conversely, rawinsonde observations paint a different picture across the mid-latitudes with increasing CAPE and significant decreases to BS06. Differing trends and disagreement between ERA5 and rawinsondes observed over some regions suggest that results should be interpreted with caution, especially for CAPE and CP across tropics where uncertainty is the highest and reliable long-term rawinsonde observations are missing.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yusuke Yokoyama ◽  
Anthony Purcell

AbstractPast sea-level change represents the large-scale state of global climate, reflecting the waxing and waning of global ice sheets and the corresponding effect on ocean volume. Recent developments in sampling and analytical methods enable us to more precisely reconstruct past sea-level changes using geological indicators dated by radiometric methods. However, ice-volume changes alone cannot wholly account for these observations of local, relative sea-level change because of various geophysical factors including glacio-hydro-isostatic adjustments (GIA). The mechanisms behind GIA cannot be ignored when reconstructing global ice volume, yet they remain poorly understood within the general sea-level community. In this paper, various geophysical factors affecting sea-level observations are discussed and the details and impacts of these processes on estimates of past ice volumes are introduced.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 135
Author(s):  
Keng-Lou James Hung ◽  
Sara S. Sandoval ◽  
John S. Ascher ◽  
David A. Holway

Global climate change is causing more frequent and severe droughts, which could have serious repercussions for the maintenance of biodiversity. Here, we compare native bee assemblages collected via bowl traps before and after a severe drought event in 2014 in San Diego, California, and examine the relative magnitude of impacts from drought in fragmented habitat patches versus unfragmented natural reserves. Bee richness and diversity were higher in assemblages surveyed before the drought compared to those surveyed after the drought. However, bees belonging to the Lasioglossum subgenus Dialictus increased in abundance after the drought, driving increased representation by small-bodied, primitively eusocial, and generalist bees in post-drought assemblages. Conversely, among non-Dialictus bees, post-drought years were associated with decreased abundance and reduced representation by eusocial species. Drought effects were consistently greater in reserves, which supported more bee species, than in fragments, suggesting that fragmentation either had redundant impacts with drought, or ameliorated effects of drought by enhancing bees’ access to floral resources in irrigated urban environments. Shifts in assemblage composition associated with drought were three times greater compared to those associated with habitat fragmentation, highlighting the importance of understanding the impacts of large-scale climatic events relative to those associated with land use change.


2008 ◽  
Vol 80 (2) ◽  
pp. 397-408 ◽  
Author(s):  
David M. Lapola ◽  
Marcos D. Oyama ◽  
Carlos A. Nobre ◽  
Gilvan Sampaio

We developed a new world natural vegetation map at 1 degree horizontal resolution for use in global climate models. We used the Dorman and Sellers vegetation classification with inclusion of a new biome: tropical seasonal forest, which refers to both deciduous and semi-deciduous tropical forests. SSiB biogeophysical parameters values for this new biome type are presented. Under this new vegetation classification we obtained a consensus map between two global natural vegetation maps widely used in climate studies. We found that these two maps assign different biomes in ca. 1/3 of the continental grid points. To obtain a new global natural vegetation map, non-consensus areas were filled according to regional consensus based on more than 100 regional maps available on the internet. To minimize the risk of using poor quality information, the regional maps were obtained from reliable internet sources, and the filling procedure was based on the consensus among several regional maps obtained from independent sources. The new map was designed to reproduce accurately both the large-scale distribution of the main vegetation types (as it builds on two reliable global natural vegetation maps) and the regional details (as it is based on the consensus of regional maps).


2014 ◽  
Vol 60 (2) ◽  
pp. 221-232 ◽  
Author(s):  
Leonard Sandin ◽  
Astrid Schmidt-Kloiber ◽  
Jens-Christian Svenning ◽  
Erik Jeppesen ◽  
Nikolai Friberg

Abstract Freshwater habitats and organisms are among the most threatened on Earth, and freshwater ecosystems have been subject to large biodiversity losses. We developed a Climate Change Sensitivity (CCS) indicator based on trait information for a selection of stream- and lake-dwelling Ephemeroptera, Plecoptera and Trichoptera taxa. We calculated the CCS scores based on ten species traits identified as sensitive to global climate change. We then assessed climate change sensitivity between the six main ecoregions of Sweden as well as the three Swedish regions based on Illies. This was done using biological data from 1, 382 stream and lake sites where we compared large-scale (ecoregional) patterns in climate change sensitivity with potential future exposure of these ecosystems to increased temperatures using ensemble-modelled future changes in air temperature. Current (1961~1990) measured temperature and ensemble-modelled future (2100) temperature showed an increase from the northernmost towards the southern ecoregions, whereas the predicted temperature change increased from south to north. The CCS indicator scores were highest in the two northernmost boreal ecoregions where we also can expect the largest global climate change-induced increase in temperature, indicating an unfortunate congruence of exposure and sensitivity to climate change. These results are of vital importance when planning and implementing management and conservation strategies in freshwater ecosystems, e.g., to mitigate increased temperatures using riparian buffer strips. We conclude that traits information on taxa specialization, e.g., in terms of feeding specialism or taxa having a preference for high altitudes as well as sensitivity to changes in temperature are important when assessing the risk from future global climate change to freshwater ecosystems.


2020 ◽  
Vol 6 (1) ◽  
pp. 5-12
Author(s):  
J.B. Zhang ◽  
J.K. Tomberlin ◽  
M.M. Cai ◽  
X.P. Xiao ◽  
L.Y. Zheng ◽  
...  

The larvae of the black soldier fly (BSF), Hermetia illucens L., are commonly associated with decaying organic wastes. Over the past 15 years, investigators in China have conducted extensive research exploring the use of BSF larvae to recycle organic materials as a means to protect the environment, while producing products of value, such as protein and bioenergy. Initial efforts were based on a BSF strain from the USA. However, since then, H. illucens strains from specimens collected in Hubei and Guangdong Provinces have been established and used as models to explore the use of this species in sustainable agriculture. China has played an instrumental role in developing an in-door breeding method using a quartz-iodine lamp rather than depend on natural sunlight. This discovery has allowed the establishment of in-door BSF colonies in regions throughout the world where abiotic conditions (i.e. cold temperatures) are preventative. Researchers in China paved the way for using microbes as a means to enhance BSF production including, enhancing BSF egg-laying as well as waste reduction. Furthermore, bacteria from BSF gut or waste can be cultured and used to promote BSF growth, shorten conversion time, and enhanced conversion efficacy. Recent efforts have demonstrated BSF larvae can degrade antibiotics as well as suppress noxious odours in livestock manure. Due to the efforts of research on BSF in China, numerous companies that recycle organic waste at a large scale (>20 tonnes waste digested/day), have been established. Resulting products include insect powder, and live BSFL that can be used as animal feed ingredients for livestock (e.g. eels and frogs), while protecting the environment. Future work will decipher the mechanisms regulating BSF larval conversion of organic waste so that the system can be optimised. However, efforts are still needed at the government level to establish quality assurance standards if this process is truly to become established as an industry in China.


2017 ◽  
Vol 10 (3) ◽  
pp. 1383-1402 ◽  
Author(s):  
Paolo Davini ◽  
Jost von Hardenberg ◽  
Susanna Corti ◽  
Hannah M. Christensen ◽  
Stephan Juricke ◽  
...  

Abstract. The Climate SPHINX (Stochastic Physics HIgh resolutioN eXperiments) project is a comprehensive set of ensemble simulations aimed at evaluating the sensitivity of present and future climate to model resolution and stochastic parameterisation. The EC-Earth Earth system model is used to explore the impact of stochastic physics in a large ensemble of 30-year climate integrations at five different atmospheric horizontal resolutions (from 125 up to 16 km). The project includes more than 120 simulations in both a historical scenario (1979–2008) and a climate change projection (2039–2068), together with coupled transient runs (1850–2100). A total of 20.4 million core hours have been used, made available from a single year grant from PRACE (the Partnership for Advanced Computing in Europe), and close to 1.5 PB of output data have been produced on SuperMUC IBM Petascale System at the Leibniz Supercomputing Centre (LRZ) in Garching, Germany. About 140 TB of post-processed data are stored on the CINECA supercomputing centre archives and are freely accessible to the community thanks to an EUDAT data pilot project. This paper presents the technical and scientific set-up of the experiments, including the details on the forcing used for the simulations performed, defining the SPHINX v1.0 protocol. In addition, an overview of preliminary results is given. An improvement in the simulation of Euro-Atlantic atmospheric blocking following resolution increase is observed. It is also shown that including stochastic parameterisation in the low-resolution runs helps to improve some aspects of the tropical climate – specifically the Madden–Julian Oscillation and the tropical rainfall variability. These findings show the importance of representing the impact of small-scale processes on the large-scale climate variability either explicitly (with high-resolution simulations) or stochastically (in low-resolution simulations).


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6731
Author(s):  
Tatiana K. Ivanova ◽  
Irina P. Kremenetskaya ◽  
Andrey I. Novikov ◽  
Valentin G. Semenov ◽  
Anatoly G. Nikolaev ◽  
...  

Serpentine heat treatment at temperatures of 650–750 °C yields magnesium–silicate reagent with high chemical activity. Precise and express control of roasting conditions in laboratory kilns and industrial aggregates is needed to derive thermally activated serpentines on a large scale. Color change in serpentines with a high iron content during roasting might be used to indicate the changes in chemical activity in the technological process. This study gives a scientific basis for the express control of roasting of such serpentines by comparing the colors of the obtained material and the reference sample. Serpentines with different chemical activity were studied by X-ray diffraction, Mössbauer spectroscopy, and optical spectroscopy. The color parameters were determined using RGB (red, green, blue), CIELAB (International Commission on Illumination 1976 L*a*b), and HSB (hue, brightness, saturation) color models. The color of heat-treated samples was found to be affected by changes in the crystallochemical characteristics of iron included in the structure of the serpentine minerals. The color characteristics given by the CIELAB model were in good coherence with the acid-neutralizing ability and optical spectra of heat-treated serpentines. Thus, in contrast to the long-term analysis by these methods, the control by color palette provides an express assessment of the quality of the resulting product.


Sign in / Sign up

Export Citation Format

Share Document