scholarly journals Characterization and Analysis of Metal Adhesion to Parylene Polymer Substrate Using Scotch Tape Test for Peripheral Neural Probe

Micromachines ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 605 ◽  
Author(s):  
Seonho Seok ◽  
HyungDal Park ◽  
Jinseok Kim

This paper presents measurement and FEM (Finite Element Method) analysis of metal adhesion force to a parylene substrate for implantable neural probe. A test device composed of 300 nm-thick gold and 30 nm-thick titanium metal electrodes on top of parylene substrate was prepared. The metal electrodes suffer from delamination during wet metal patterning process; thus, CF4 plasma treatment was applied to the parylene substrate before metal deposition. The two thin film metal layers were deposited by e-beam evaporation process. Metal electrodes had 200 μm in width, 300 μm spacing between the metal lines, and 5 mm length as the neural probe. Adhesion force of the metal lines to parylene substrate was measured with scotch tape test. Angle between the scotch tape and the test device substrate changed from 60° to 90° during characterization. Force exerted the scotch tape was recorded as the function of displacement of the scotch tape. It was found that a peak was created in measured force-displacement curve due to metal delamination. Metal adhesion was estimated 1.3 J/m2 by referring to the force peak and metal width at the force-displacement curve. Besides, the scotch tape test was simulated to comprehend delamination behavior of the test through FEM modeling.

2012 ◽  
Vol 627 ◽  
pp. 476-479 ◽  
Author(s):  
Feng Ji ◽  
Yi Ping Qiu ◽  
Jian Fei Xie ◽  
Shu Yao Sun

It has long been a problem how to objectively evaluate the wet wearing comfortability of fabrics. In this paper a novel testing method was proposed, and an instrument was designed and made. During the testing process, the fabric specimen first got saturated by “sweat” and adhered on the “skin”, and then it was separated at due rate from the skin and the in time adhesion force-displacement curve was drawn simultaneously. When the fabric was totally separated from the skin, the maximum adhesion force and adhesion work were measured such as to objectively evaluate the adhesion properties of the fabric specimen. Six different kinds of fabrics were selected and tested. The results show that certain kind of fabric performs characteristic adhesion force-displacement curve, which should be explained through fabric materials and structures. Hence this method is effective in objectively reflecting the wet wearing comfortability of fabrics.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110368
Author(s):  
Dong An ◽  
Jiaqi Song ◽  
Hailiang Xu ◽  
Jingzong Zhang ◽  
Yimin Song ◽  
...  

When the rock burst occurs, energy absorption support is an important method to solve the impact failure. To achieve constant resistance performance of energy absorption device, as an important component of the support, the mechanical properties of one kind of prefolded tube is analyzed by quasi-static compression test. The deformation process of compression test is simulated by ABAQUS and plastic strain nephogram of the numerical model are studied. It is found that the main factors affecting the fluctuation of force-displacement curve is the stiffness of concave side wall. The original tube is improved to constant resistance by changing the side wall. The friction coefficient affects the folding order and form of the energy absorbing device. Lifting the concave side wall stiffness can improve the overall stiffness of energy absorption device and slow down the falling section of force-displacement curve. It is always squeezed by adjacent convex side wall in the process of folding, with large plastic deformation. Compared with the original one, the improved prefolded tube designed in this paper can keep the maximum bearing capacity ( Pmax), increase the total energy absorption ( E), improve the specific energy absorption (SEA), and decrease the variance ( S2) of force-displacement curve.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Peida Hao ◽  
Yanping Liu ◽  
Yuanming Du ◽  
Yuefei Zhang

In situ nanoindentation was employed to probe the mechanical properties of individual polycrystalline titania (TiO2) microspheres. The force-displacement curves captured by a hybrid scanning electron microscope/scanning probe microscope (SEM/SPM) system were analyzed based on Hertz’s theory of contact mechanics. However, the deformation mechanisms of the nano/microspheres in the nanoindentation tests are not very clear. Finite element simulation was employed to investigate the deformation of spheres at the nanoscale under the pressure of an AFM tip. Then a revised method for the calculation of Young’s modulus of the microspheres was presented based on the deformation mechanisms of the spheres and Hertz’s theory. Meanwhile, a new force-displacement curve was reproduced by finite element simulation with the new calculation, and it was compared with the curve obtained by the nanoindentation experiment. The results of the comparison show that utilization of this revised model produces more accurate results. The calculated results showed that Young’s modulus of a polycrystalline TiO2microsphere was approximately 30% larger than that of the bulk counterpart.


2009 ◽  
Vol 24 (3) ◽  
pp. 784-800 ◽  
Author(s):  
Ling Liu ◽  
Nagahisa Ogasawara ◽  
Norimasa Chiba ◽  
Xi Chen

Indentation is widely used to extract material elastoplastic properties from measured force-displacement curves. Many previous studies argued or implied that such a measurement is unique and the whole material stress-strain curve can be measured. Here we show that first, for a given indenter geometry, the indentation test cannot effectively probe material plastic behavior beyond a critical strain, and thus the solution of the reverse analysis of the indentation force-displacement curve is nonunique beyond such a critical strain. Secondly, even within the critical strain, pairs of mystical materials can exist that have essentially identical indentation responses (with differences below the resolution of published indentation techniques) even when the indenter angle is varied over a large range. Thus, fundamental elastoplastic behaviors, such as the yield stress and work hardening properties (functions), cannot be uniquely determined from the force-displacement curves of indentation analyses (including both plural sharp indentation and deep spherical indentation). Explicit algorithms of deriving the mystical materials are established, and we qualitatively correlate the sharp and spherical indentation analyses through the use of critical strain. The theoretical study in this paper addresses important questions of the application range, limitations, and uniqueness of the indentation test, as well as providing useful guidelines to properly use the indentation technique to measure material constitutive properties.


1998 ◽  
Vol 515 ◽  
Author(s):  
S. Wiese ◽  
F. Feustel ◽  
S. Rzepka ◽  
E. Meusel

ABSTRACTThe paper presents crack propagation experiments on real flip chip specimens applied to reversible shear loading. Two specially designed micro testers will be introduced. The first tester provides very precise measurements of the force displacement hysteresis. The achieved resolutions have been I mN for force and 20 nm for displacement. The second micro tester works similar to the first one, but is designed for in-situ experiments inside the SEM. Since it needs to be very small in size it reaches only resolutions of 10 mN and 100nm, which is sufficient to achieve equivalence to the first tester. A cyclic triangular strain wave is used as load profile for the crack propagation experiment. The experiment was done with both machines applying equivalent specimens and load. The force displacement curve was recorded using the first micro mechanical tester. From those hysteresis, the force amplitude has been determined for every cycle. All force amplitudes are plotted versus the number of cycles in order to quantify the crack length. With the second tester, images were taken at every 10th … 100th cycle in order to locate the crack propagation. Finally both results have been linked together for a combined quatitive and spatial description of the crack propagation in flip chip solder joints.


2008 ◽  
Vol 392-394 ◽  
pp. 267-270
Author(s):  
Qiang Liu ◽  
Ying Xue Yao ◽  
L. Zhou

Nanoindentation device has the ability to make the load-displacement measurement with sub-nanometer indentation depth sensitivity, and the nanohardness of the material can be achieved by the load-displacement curve. Aiming at the influence law of indenter tip radius to indentation hardness, testing on the hardness of single-crystal silicon were carried out with the new self-designed nanohardness test device based on nanoindentation technique. Two kinds of Berkovich indenter with radius 40nm and 60nm separately were used in this experiment. According to the load-depth curve, the hardness of single-crystal silicon was achieved by Oliver-Pharr method. Experimental results are presented which show that indenter tip radius do influence the hardness, the hardness value increases and the indentation size effect (ISE) becomes obvious with the increasing of tip radius under same indentation depth.


2020 ◽  
Vol 258 (10) ◽  
pp. 2173-2184 ◽  
Author(s):  
Robert Herber ◽  
Mathew Francis ◽  
Eberhard Spoerl ◽  
Lutz E. Pillunat ◽  
Frederik Raiskup ◽  
...  

Abstract Purpose To assess corneal stiffening of standard (S-CXL) and accelerated (A-CXL) cross-linking protocols by dynamic corneal response parameters and corneal bending stiffness (Kc[mean/linear]) derived from Corvis (CVS) Scheimpflug-based tonometry. These investigations were validated by corneal tensile stiffness (K[ts]), derived from stress-strain extensometry in ex vivo porcine eyes. Methods Seventy-two fresh-enucleated and de-epithelized porcine eyes were soaked in 0.1% riboflavin solution including 10% dextran for 10 min. The eyes were separated into four groups: controls (n = 18), S-CXL (intensity in mW/cm2*time in min; 3*30) (n = 18), A-CXL (9*10) (n = 18), and A-CXL (18*5) (n = 18), respectively. CXL was performed using CCL Vario. CVS measurements were performed on all eyes. Subsequently, corneal strips were extracted by a double-bladed scalpel and used for stress-strain measurements. K[ts] was calculated from a force-displacement curve. Mean corneal stiffness (Kc[mean]) and constant corneal stiffness (Kc[linear]) were calculated from raw CVS data. Results In CVS, biomechanical effects of cross-linking were shown to have a significantly decreased deflection amplitude as well as integrated radius, an increased IOP, and SP A1 (P < 0.05). Kc[mean]/Kc[linear] were significantly increased after CXL (P < 0.05). In the range from 2 to 6% strain, K[ts] was significantly higher in S-CXL (3*30) compared to A-CXL (9*10), A-CXL (18*5), and controls (P < 0.05). At 8% to 10% strain, all protocols induced a higher stiffness than controls (P < 0.05). Conclusion Several CVS parameters and Kc[mean] as well as Kc[linear] verify corneal stiffening effect after CXL on porcine eyes. S-CXL seems to have a higher tendency of stiffening than A-CXL protocols have, which was demonstrated by Scheimpflug-based tonometry and stress-strain extensometry.


Author(s):  
Charles Miller ◽  
Alan Barr ◽  
Raziel Riemer ◽  
Carisa Harris

Introduction:Single force-displacement characteristics of mechanical key switches have been shown to affect performance, fatigue and discomfort during keyboard use. This study compared the effects of mechanical key switches with differing force-displacement characteristics on forearm muscle activity, typing performance, Fitts Study task performance, subjective fatigue and user preference. Methods: Using a within subjects intervention study of crossover design, 64 subjects completed modified Fitts and typing tasks on five different mechanical key switches to mimic dual word processing and gaming keyboard use. Bilateral muscle activity was recorded using surface electromyography (EMG); typing and Fitts task performance measures were tracked. Results: The key switch with a linear force displacement curve had higher net strokes and lower net typing speed than two key switches with tactile feedback (p<0.05). The key switch with the longest tactile travel, operating travel and highest bottom force required slightly higher peak muscle activity compared to 2 other key switches with lower values (p<0.05). Key switches with shorter tactile and operating travel and lower bottom forces were preferred over other key switches.Conclusions: Among mechanical key switches, a linear force displacement curve had the worst outcomes; key switches with shorter tactile (1.2mm) and operating travel (2.0mm) and a lower bottom force (35-40g) had best outcomes overall.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Michelle L. Zec ◽  
Paul Thistlethwaite ◽  
Cyril B. Frank ◽  
Nigel G. Shrive

Ligaments are regularly subjected to repetitive loading in vivo. Typically, mechanical studies focus on repetitive loading protocols of short duration, while those characterizing damage accumulation over a longer duration (i.e., fatigue studies) are lacking. The aims of this study were as follows: (a) to demonstrate that damage does accumulate in ligament tissue subjected to repetitive loading and (b) to evaluate existing and new methods for characterizing fatigue damage accumulation. It was hypothesized that ligaments would accumulate damage with repetitive loading as evidenced by failure at stresses well below ultimate tensile strength, creep curve discontinuities, and by reductions in stiffness during loading. Eight normal medial collateral ligaments from female New Zealand white rabbits were cycled in tension, between 0 MPa and 28 MPa, to failure or until 259,200 cycles, whichever came first. Medial collateral ligaments that did not fail were subsequently loaded to failure. Displacement rates (dlmax/dt) as well as primary, secondary, and tertiary creeps were monitored as indices of damage accumulation and impending mechanical failure. Additionally, the relative utilities of tangent, secant, and chord stiffness parameters were critically evaluated. Finally, new uses for the second derivative of force-displacement data were explored. Three out of eight ligaments failed during testing, demonstrating that ligaments can fail in fatigue under moderate tensile stress in vitro. The evaluation of displacement rates (dlmax/dt), as well as primary through tertiary creep patterns, were not well suited to predicting failure in normal ligaments until rupture was all but imminent. Tangent stiffness, which was calculated from a mathematically defined start of the “linear region,” was surprisingly constant throughout testing. Secant stiffness dropped in a predictable fashion, providing a global indicator of tissue stiffness, but did not provide any insight into fiber mechanics. Chord stiffness, on the other hand, appeared to be sensitive to fiber recruitment patterns. The second derivative of force-displacement data proved to be a useful means of (a) objectively defining the start of the linear region and (b) inferring changes in fiber recruitment patterns within ligament tissue. Tangent, secant, and chord stiffnesses highlight different attributes of ligament responses to loading; hence these parameters cannot be used interchangeably. Additionally, the second derivative of the force-displacement curve was introduced as a useful descriptive and analytical tool.


Sign in / Sign up

Export Citation Format

Share Document