scholarly journals 3D-Printing Piezoelectric Composite with Honeycomb Structure for Ultrasonic Devices

Micromachines ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 713
Author(s):  
Yushun Zeng ◽  
Laiming Jiang ◽  
Yizhe Sun ◽  
Yang Yang ◽  
Yi Quan ◽  
...  

Piezoelectric composites are considered excellent core materials for fabricating various ultrasonic devices. For the traditional fabrication process, piezoelectric composite structures are mainly prepared by mold forming, mixing, and dicing-filing techniques. However, these techniques are limited on fabricating shapes with complex structures. With the rapid development of additive manufacturing (AM), many research fields have applied AM technology to produce functional materials with various geometric shapes. In this study, the Mask-Image-Projection-based Stereolithography (MIP-SL) process, one of the AM (3D-printing) methods, was used to build BaTiO3-based piezoelectric composite ceramics with honeycomb structure design. A sintered sample with denser body and higher density was achieved (i.e., density obtained 5.96 g/cm3), and the 3D-printed ceramic displayed the expected piezoelectric and ferroelectric properties using the complex structure (i.e., piezoelectric constant achieved 60 pC/N). After being integrated into an ultrasonic device, the 3D-printed component also presents promising material performance and output power properties for ultrasound sensing (i.e., output voltage reached 180 mVpp). Our study demonstrated the effectiveness of AM technology in fabricating piezoelectric composites with complex structures that cannot be fabricated by dicing-filling. The approach may bring more possibilities to the fabrication of micro-electromechanical system (MEMS)-based ultrasonic devices via 3D-printing methods in the future.

Author(s):  
Rytis Mitkus ◽  
Andreas Pierou ◽  
Julia Feder ◽  
Michael Sinapius

Abstract The present study demonstrates the manufacturing and characterization of 0-3 piezoelectric composites made of up to 10 vol% of Lead Zirconate Titanate (PZT) particles and photopolymer resins. The tape-casting method was used to investigate the curing behavior, PZT loading limitations and the overall feasibility of the suspensions for 3D printing. Piezoelectric composites were 3D printed with a commercial DLP type 3D printer. As a starting point, the maximum possible vol% loading of PZT ceramic for each photopolymer resin was investigated. Five different commercially available photopolymer resins from Formlabs (Somerville, MA, US) were used. It was found that the addition of PZT particles to the photopolymer increases the time required for the photopolymer to solidify because PZT particles scatter the UV light. The approximate solidification time of each composition was measured, followed by viscosity measurements. SEM imaging of the composites showed good particle dispersion with minimum agglomeration, low particle sedimentation, but the weak bond between PZT particles and the photopolymers. Best performed material composition with 10 vol% of PZT was used for 3D printing. An attempt to shorten exposure time during printing was done by adding photoinitiator TPO. Suspensions with and without TPO were 3D printed and compared.


2021 ◽  
Vol 11 (18) ◽  
pp. 8545
Author(s):  
So-Ree Hwang ◽  
Min-Soo Park

Additive manufacturing, commonly called 3D printing, has been studied extensively because it can be used to fabricate complex structures; however, polymer-based 3D printing has limitations in terms of implementing certain functionalities, so it is limited in the production of conceptual prototypes. As such, polymer-based composites and multi-material 3D printing are being studied as alternatives. In this study, a DLP 3D printer capable of printing multiple composite materials was fabricated using a movable separator and structures with various properties were fabricated by selectively printing two composite materials. After the specimen was fabricated based on the ASTM, the basic mechanical properties of the structure were compared through a 3-point bending test and a ball rebound test. Through this, it was shown that structures with various mechanical properties can be fabricated using the proposed movable-separator-based DLP process. In addition, it was shown that this process can be used to fabricate anisotropic structures, whose properties vary depending on the direction of the force applied to the structure. By fabricating multi-joint grippers with varying levels of flexibility, it was shown that the proposed process can be applied in the fabrication of soft robots as well.


2021 ◽  
Vol 1 (142) ◽  
pp. 131-139
Author(s):  
Yuliya A. Lopatina ◽  
◽  
Vyacheslav A. Denisov

In the designs of modern machines, more and more polymer parts are used, at the same time, there is a problem of their quick replacement in case of failure. Reducing the cost and repair time can be achieved by using 3D printing by FDM method, but such parts do not always demonstrate the necessary strength. To improve their mechanical properties, a method of their impregnation after printing in epoxy resins was previously proposed. (Research purpose) The research purpose is in studying the dependence of the porosity of composite structures based on 3D-printed frames impregnated with resin on the parameters of their manufacture. (Materials and methods) Authors used samples for the first stage of the work, which are 3D-printed cylinders with different wall thicknesses and internal geometries, impregnated with ED-20 epoxy resin. The samples were cut in several sections and the number of pores in these sections was calculated. The second stage of the experiment was to evaluate the porosity of a part of complex geometry. (Results and discussion) With an increase in the percentage of filling and thickening of the wall in 3D printing, there is a tendency to reduce the number of pores. With a less dense filling of the frame and a thinner wall, the resin is worse retained in the product and partially flows out after impregnation. The best filling of a part of a complex shape was observed when it was cured in the position of the massive part up. (Conclusions) For the production of high- quality composite parts based on 3D-printed frames impregnated with epoxy resin, it is recommended to choose the largest possible percentage of filling during 3D printing and strive to position the part during the curing process after impregnation with the massive part up.


2020 ◽  
Vol 92 (8) ◽  
pp. 1341-1355 ◽  
Author(s):  
Pavel N. Nesterenko

AbstractThe rapid development of additive technologies in recent years is accompanied by their intensive introduction into various fields of science and related technologies, including analytical chemistry. The use of 3D printing in analytical instrumentation, in particular, for making prototypes of new equipment and manufacturing parts having complex internal spatial configuration, has been proved as exceptionally effective. Additional opportunities for the widespread introduction of 3D printing technologies are associated with the development of new optically transparent, current- and thermo-conductive materials, various composite materials with desired properties, as well as possibilities for printing with the simultaneous combination of several materials in one product. This review will focus on the application of 3D printing for production of new advanced analytical devices, such as compact chromatographic columns for high performance liquid chromatography, flow reactors and flow cells for detectors, devices for passive concentration of toxic compounds and various integrated devices that allow significant improvements in chemical analysis. A special attention is paid to the complexity and functionality of 3D-printed devices.


2019 ◽  
Vol 5 (2) ◽  
Author(s):  
Yi Zhang

As microfluidic devices are designed to tackle more intricate tasks, the architecture of microfluidic devicesbecomes more complex, and more sophisticated fabrication techniques are in demand. Therefore, it is sensible to fabricatemicrofluidic devices by three-dimensional (3D)-printing, which is well-recognized for its unique ability to monolithicallyfabricate complex structures using a near-net-shape additive manufacturing process. Many 3D-printed microfluidic platformshave been demonstrated but can 3D-printed microfluidics meet the demanding requirements in today’s context, and hasmicrofluidics truly benefited from 3D-printing? In contrast to 3D-printed microfluidics, some go the other way around andexploit microfluidics for 3D-printing. Many innovative printing strategies have been made possible with microfluidicsenabled3D-printing, although the limitations are also largely evident. In this perspective article, we take a look at the currentdevelopment in 3D-printed microfluidics and microfluidics-enabled 3D printing with a strong focus on the limitations of thetwo technologies. More importantly, we attempt to identify the innovations required to overcome these limitations and todevelop new high-value applications that would make a scientific and social impact in the future.


2021 ◽  
Vol 1 (142) ◽  
pp. 131-139
Author(s):  
Yuliya Lopatina ◽  
◽  
Vyacheslav Denisov

In the designs of modern machines, more and more polymer parts are used, at the same time, there is a problem of their quick replacement in case of failure. Reducing the cost and repair time can be achieved by using 3D printing by FDM method, but such parts do not always demonstrate the necessary strength. To improve their mechanical properties, a method of their impregnation after printing in epoxy resins was previously proposed. (Research purpose) The research purpose is in studying the dependence of the porosity of composite structures based on 3D-printed frames impregnated with resin on the parameters of their manufacture. (Materials and methods) Authors used samples for the first stage of the work, which are 3D-printed cylinders with different wall thicknesses and internal geometries, impregnated with ED-20 epoxy resin. The samples were cut in several sections and the number of pores in these sections was calculated. The second stage of the experiment was to evaluate the porosity of a part of complex geometry. (Results and discussion) With an increase in the percentage of filling and thickening of the wall in 3D printing, there is a tendency to reduce the number of pores. With a less dense filling of the frame and a thinner wall, the resin is worse retained in the product and partially flows out after impregnation. The best filling of a part of a complex shape was observed when it was cured in the position of the massive part up. (Conclusions) For the production of high-quality composite parts based on 3D-printed frames impregnated with epoxy resin, it is recommended to choose the largest possible percentage of filling during 3D printing and strive to position the part during the curing process after impregnation with the massive part up.


2015 ◽  
Vol 2015 (1) ◽  
pp. 000210-000215 ◽  
Author(s):  
Paul I. Deffenbaugh ◽  
Mike Newton ◽  
Kenneth H. Church

3D printing structures is natural for the layer by layer approach. Using a single type of material and building complex structures is not optimized but it is mature. This digital approach to manufacturing has the advantages of lighter structures that maintain strength and can also address the emerging custom market. While these are important contributions, adding electrically functional characteristics to the structures will open new opportunities for next generation products. In the case of the presented materials, the target application is small satellite or Satlets. Adding electronics to 3D structures is not optimized or mature and therefore studying this will be important to understand the potential and the obstacles that must be addressed. Utilizing the combination of 3D printing and printed electronics, we printed a number of device demonstrations the show it is feasible to make diverse shapes with functional electronics. Demonstrations included 3D printed multilayer ceramic Ethernet harness, 3D printed plastic RF controlled impedance interconnect and USB harness and finally 3D printed connectors. Data will be presented on mechanical integrity of printed structures and electrical performance.


2021 ◽  
Vol 1038 ◽  
pp. 162-167
Author(s):  
Kseniia Potopalska ◽  
Olena Tyshkovets ◽  
Andriy Kalinovskyi ◽  
Serhii Vasyliev

Additive manufacturing technologies continue to develop extremely fast. Their opportunity of reproducing any given complex geometric form they superior to traditional production technologies. Despite the rapid development and distribution, there are still areas that require special attention for the study of the behavior of materials for 3D printing. This work presents method of defining mechanical property of PLA plastic for 3D printed parts. For this, a full-scale experiment was carried out using specimens created by 3D printing. After carrying out the tensile test, the tensile diagram was determined.


Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1804
Author(s):  
Agnese Piovesan ◽  
Valérie Vancauwenberghe ◽  
Wondwosen Aregawi ◽  
Mulugeta A. Delele ◽  
Evi Bongaers ◽  
...  

Additive manufacturing or 3D printing can be applied in the food sector to create food products with personalized properties such as shape, texture, and composition. In this article, we introduce a computer aided engineering (CAE) methodology to design 3D printed food products with tunable mechanical properties. The focus was on the Young modulus as a proxy of texture. Finite element modelling was used to establish the relationship between the Young modulus of 3D printed cookies with a honeycomb structure and their structure parameters. Wall thickness, cell size, and overall porosity were found to influence the Young modulus of the cookies and were, therefore, identified as tunable design parameters. Next, in experimental tests, it was observed that geometry deformations arose during and after 3D printing, affecting cookie structure and texture. The 3D printed cookie porosity was found to be lower than the designed one, strongly influencing the Young modulus. After identifying the changes in porosity through X-ray micro-computed tomography, a good match was observed between computational and experimental Young’s modulus values. These results showed that changes in the geometry have to be quantified and considered to obtain a reliable prediction of the Young modulus of the 3D printed cookies.


Author(s):  
Kumar Vikram Singh ◽  
Fazeel Khan ◽  
Jacob Veta ◽  
Anil Kumar Singh

Rapid development in the field of additive manufacturing, evidenced, in part, by the proliferation of low cost 3D printing, has accelerated the prototyping and design evaluation stages of the product development cycle. 3D printed structures have shown variations in their material properties as a function of the printing orientation. Moreover, thermoplastic materials which are often used as filament materials for 3D printing are known to have dependency on temperature, frequency and strain rate. Hence, the aim of this research is to estimate the variations in the complex modulus of the printed materials as a function of printing direction. This will allow an estimation of the variation in the vibration characteristics (natural frequencies, damping) of the printed structures as a function of printing direction. To this end, PLA beams were printed in four different orientations. A dynamic mechanical analyzer was used to measure mechanical properties of the printed beams. By using a curve fit method, the frequency and temperature dependent complex modulus is estimated. These complex moduli are used for estimating the eigenvalues of a non-dimensional beam. The observed variability in the vibration behavior as a function of the printing orientation is summarized here.


Sign in / Sign up

Export Citation Format

Share Document