An Experimental Study on Elastic and Strength Properties of Addictively-Manufactured Plastic Materials

2021 ◽  
Vol 1038 ◽  
pp. 162-167
Author(s):  
Kseniia Potopalska ◽  
Olena Tyshkovets ◽  
Andriy Kalinovskyi ◽  
Serhii Vasyliev

Additive manufacturing technologies continue to develop extremely fast. Their opportunity of reproducing any given complex geometric form they superior to traditional production technologies. Despite the rapid development and distribution, there are still areas that require special attention for the study of the behavior of materials for 3D printing. This work presents method of defining mechanical property of PLA plastic for 3D printed parts. For this, a full-scale experiment was carried out using specimens created by 3D printing. After carrying out the tensile test, the tensile diagram was determined.

Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3133
Author(s):  
Jacek Katzer ◽  
Tomasz Szatkiewicz

In their fourth decade of development, additive manufacturing technologies are slowly entering research programs dedicated to building materials. While the majority of research effort is focused on using 3D printing of concrete, the authors propose using the technology for creation of spatial plastic reinforcement. Obviously, the strength properties of a 3D printed polymer are much lower than those of steel. Nevertheless, the unconventional spatial shape of a 3D printed reinforcement can substitute for much of the lower mechanical performance of polymer. Flexural characteristics of a cement mortar prism specimen reinforced by hexagon spatial elements were tested and analyzed in this paper. The hexagonal geometric shape was chosen due to its high rigidness. It was proven that it is possible to efficiently reinforce concrete beams by spatial 3D printed polymer elements. Directions of needed research were pointed and discussed.


2018 ◽  
Vol 919 ◽  
pp. 222-229
Author(s):  
Jiří Šafka ◽  
Filip Veselka ◽  
Martin Lachman ◽  
Michal Ackermann

The article deals with the topic of 3D printing of pressure vessels and their testing. The main focus of the research was on a 3D model of the pressure vessel, which was originally designed for a student formula racing car project. The described virtual 3D model was designed with regard to 3D printing. The physical model was manufactured using several additive manufacturing technologies. The first technology was FDM using ULTEM 1010 material. The next technology was SLS (Selective Laser Sintering) using polyamide materials (PA3200GF and PA2220). The last technology was SLA (Stereolithography) using a polypropylene material (Durable). Experimental evaluation of the vessels was carried out by a pressure test, which verified the compactness of the 3D printed parts and their possible porosity. At the end of the article, a comparison of each printed model is made in terms of their final price and weight, together with pressure and thermal resistance.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Anna Aimar ◽  
Augusto Palermo ◽  
Bernardo Innocenti

Three-dimensional (3D) printing refers to a number of manufacturing technologies that generate a physical model from digital information. Medical 3D printing was once an ambitious pipe dream. However, time and investment made it real. Nowadays, the 3D printing technology represents a big opportunity to help pharmaceutical and medical companies to create more specific drugs, enabling a rapid production of medical implants, and changing the way that doctors and surgeons plan procedures. Patient-specific 3D-printed anatomical models are becoming increasingly useful tools in today’s practice of precision medicine and for personalized treatments. In the future, 3D-printed implantable organs will probably be available, reducing the waiting lists and increasing the number of lives saved. Additive manufacturing for healthcare is still very much a work in progress, but it is already applied in many different ways in medical field that, already reeling under immense pressure with regards to optimal performance and reduced costs, will stand to gain unprecedented benefits from this good-as-gold technology. The goal of this analysis is to demonstrate by a deep research of the 3D-printing applications in medical field the usefulness and drawbacks and how powerful technology it is.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3364
Author(s):  
Bahaa Shaqour ◽  
Inés Reigada ◽  
Żaneta Górecka ◽  
Emilia Choińska ◽  
Bart Verleije ◽  
...  

Additive manufacturing technologies have been widely used in the medical field. More specifically, fused filament fabrication (FFF) 3D-printing technology has been thoroughly investigated to produce drug delivery systems. Recently, few researchers have explored the possibility of directly 3D printing such systems without the need for producing a filament which is usually the feedstock material for the printer. This was possible via direct feeding of a mixture consisting of the carrier polymer and the required drug. However, as this direct feeding approach shows limited homogenizing abilities, it is vital to investigate the effect of the pre-mixing step on the quality of the 3D printed products. Our study investigates the two commonly used mixing approaches—solvent casting and powder mixing. For this purpose, polycaprolactone (PCL) was used as the main polymer under investigation and gentamicin sulfate (GS) was selected as a reference. The produced systems’ efficacy was investigated for bacterial and biofilm prevention. Our data show that the solvent casting approach offers improved drug distribution within the polymeric matrix, as was observed from micro-computed topography and scanning electron microscopy visualization. Moreover, this approach shows a higher drug release rate and thus improved antibacterial efficacy. However, there were no differences among the tested approaches in terms of thermal and mechanical properties.


2017 ◽  
Vol 265 ◽  
pp. 490-495
Author(s):  
I.V. Zlobina ◽  
N.V. Bekrenev ◽  
G.K. Muldasheva

The analysis of the prospects for the use of additive technologies in the production of aerospace equipment has been performed. It is shown that one of the main problems of implementation of these technologies in the main production is the lack of strength and endurance of 3D printing objects. The influence of electro physical effects of varying intensity on the strength properties of the objects from powder materials, formed by 3D printing has been researched. It is found that the electromagnetic field of medium intensity of the investigated range causes an increase in the flexural strength of the plates made of powder Zp130 impregnated with cyanoacrylate Z-Bond TM90, not less than 38%. Thus, a 24% decrease in pore size and reduction in their dispersion by almost 30% is noticed. It is shown that the composite material structure becomes denser with a large number of connections between the agglomerates. The increase in the number of connections, and the increased uniformity of the structure after the electrophysical influence is one of the mechanisms to improve the strength of 3D printed objects exposed to electro-physical influence.


2020 ◽  
Vol 11 (1) ◽  
pp. 161-170
Author(s):  
J-R. R. Diego ◽  
Dan William C. Martinez ◽  
Gerald S. Robles ◽  
John Ryan C. Dizon

AbstractThis study addresses the need for assistive technology of people who lost control of their upper limbs as well as people who are undergoing rehabilitation. Loss of upper limb control causes lack of functionality and social acceptability especially for many people in developing countries with fewer available technology. The study develops a modern but low-cost prosthetic device that can be controlled by users using a smartphone and can be rapidly manufactured using three-dimensional printing (3D printing) of plastic materials. The development of the prosthetic device includes designing the mechanical and electronic parts, programming the Arduino board and Android application for control, simulation and analysis of 3D printed parts most subjected to stress, and 3D printing the parts under different settings. The device was tested in terms of time spent and capacity of lifting varying loads when not worn and when worn by users. The device can effectively lift 500 grams of load in one second for a person weighing between 50 to 60 kilograms.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 924
Author(s):  
Merima Sirbubalo ◽  
Amina Tucak ◽  
Kenan Muhamedagic ◽  
Lamija Hindija ◽  
Ognjenka Rahić ◽  
...  

Microneedles (MNs) represent the concept of attractive, minimally invasive puncture devices of micron-sized dimensions that penetrate the skin painlessly and thus facilitate the transdermal administration of a wide range of active substances. MNs have been manufactured by a variety of production technologies, from a range of materials, but most of these manufacturing methods are time-consuming and expensive for screening new designs and making any modifications. Additive manufacturing (AM) has become one of the most revolutionary tools in the pharmaceutical field, with its unique ability to manufacture personalized dosage forms and patient-specific medical devices such as MNs. This review aims to summarize various 3D printing technologies that can produce MNs from digital models in a single step, including a survey on their benefits and drawbacks. In addition, this paper highlights current research in the field of 3D printed MN-assisted transdermal drug delivery systems and analyzes parameters affecting the mechanical properties of 3D printed MNs. The current regulatory framework associated with 3D printed MNs as well as different methods for the analysis and evaluation of 3D printed MN properties are outlined.


2020 ◽  
Vol 92 (8) ◽  
pp. 1341-1355 ◽  
Author(s):  
Pavel N. Nesterenko

AbstractThe rapid development of additive technologies in recent years is accompanied by their intensive introduction into various fields of science and related technologies, including analytical chemistry. The use of 3D printing in analytical instrumentation, in particular, for making prototypes of new equipment and manufacturing parts having complex internal spatial configuration, has been proved as exceptionally effective. Additional opportunities for the widespread introduction of 3D printing technologies are associated with the development of new optically transparent, current- and thermo-conductive materials, various composite materials with desired properties, as well as possibilities for printing with the simultaneous combination of several materials in one product. This review will focus on the application of 3D printing for production of new advanced analytical devices, such as compact chromatographic columns for high performance liquid chromatography, flow reactors and flow cells for detectors, devices for passive concentration of toxic compounds and various integrated devices that allow significant improvements in chemical analysis. A special attention is paid to the complexity and functionality of 3D-printed devices.


2021 ◽  
Author(s):  
Aram Khosh Ettekal

The following report has been created to provide a broad range of information on current additive manufacturing technologies, their present applications in commercial and industrial sectors and predictions for their future deployment in those sectors. The report also examines the ongoing research and development of a variety of 3D printing techniques. The review is divided into three sections. The first section is composed of one to two page summaries of academic journals, thesis papers, consultant perspective articles and company releases. Each individual summary provides a synopsis of the article, as well as what the authors foresee as the future implications of the topic they explored. The second section contains summaries and reviews of technical studies on various aspects of several different 3D printing technologies. Lastly the third section introduces implementation strategy for 3D printed components and presents a study that highlights the effect of part orientation on the structural integrity of the printed components.


2021 ◽  
Vol 5 (4) ◽  
pp. 114
Author(s):  
Yousuf Pasha Shaik ◽  
Jens Schuster ◽  
Aarif Shaik ◽  
Mustafa Mohammed ◽  
Harshavardhan Reddy Katherapalli

In additive manufacturing technologies, fused deposition modelling (FDM) is continuing its advancement from rapid prototyping to rapid manufacturing. However, effective usage of FDM is not performed due to the poor mechanical properties of the 3D-printed components. This drawback restricts their usage in many applications. Much research, such as reinforcing 3D-printed parts with fibers, changing printing parameters (infill density, infill concentration, extrusion temperature, nozzle diameter, layer thickness, raster angle, etc.) are aimed to increase the mechanical properties of 3D-printed parts. This research paper aims to investigate the effect of pressure and temperature on the mechanical properties and consolidation of layers of 3D-printed PLA (Polylactic Acid). Post-treatment was done using a customized autoclave. Autoclave has the capability to maintain 185 °C and 135 bar pressure. Three-dimensional-printed specimens were manufactured using the FDM process with two patterns. Later, the specimens were subjected to various post-treatment processes, then followed with testing and analysis of mechanical properties. Post-treatment process carried out by placing them in an autoclave at certain pressure and temperature conditions. To investigate the repeatability and tolerances, the test series includes a minimum of four to six test specimens. The results indicate that the concentric pattern yields the most desirable tensile, impact, and flexural strength due to the alignment of deposited rasters and better consolidation of layers with the loading direction. The pressure and temperature of the autoclave has a positive effect on the PLA samples, which helped them to reorganize the structure, hence strength properties were enhanced. The test results also compared with injection-molded samples for better understating.


Sign in / Sign up

Export Citation Format

Share Document