scholarly journals Recent Advances in the Fabrication and Application of Graphene Microfluidic Sensors

Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1059
Author(s):  
Shigang Wu ◽  
Xin Wang ◽  
Zongwen Li ◽  
Shijie Zhang ◽  
Fei Xing

This review reports the progress of the recent development of graphene-based microfluidic sensors. The introduction of microfluidics technology provides an important possibility for the advance of graphene biosensor devices for a broad series of applications including clinical diagnosis, biological detection, health, and environment monitoring. Compared with traditional (optical, electrochemical, and biological) sensing systems, the combination of graphene and microfluidics produces many advantages, such as achieving miniaturization, decreasing the response time and consumption of chemicals, improving the reproducibility and sensitivity of devices. This article reviews the latest research progress of graphene microfluidic sensors in the fields of electrochemistry, optics, and biology. Here, the latest development trends of graphene-based microfluidic sensors as a new generation of detection tools in material preparation, device assembly, and chip materials are summarized. Special emphasis is placed on the working principles and applications of graphene-based microfluidic biosensors, especially in the detection of nucleic acid molecules, protein molecules, and bacterial cells. This article also discusses the challenges and prospects of graphene microfluidic biosensors.

2014 ◽  
Vol 971-973 ◽  
pp. 143-147 ◽  
Author(s):  
Ping Dai ◽  
Shuang Xiu Li

The development of a new generation of high performance gas turbine engines requires gas turbines to be operated at very high inlet temperatures, which are much higher than the allowable metal temperatures. Consequently, this necessitates the need for advanced cooling techniques. Among the numerous cooling technologies, the film cooling technology has superior advantages and relatively favorable application prospect. The recent research progress of film cooling techniques for gas turbine blade is reviewed and basic principle of film cooling is also illustrated. Progress on rotor blade and stationary blade of film cooling are introduced. Film cooling development of leading-edge was also generalized. Effect of various factor on cooling effectiveness and effect of the shape of the injection holes on plate film cooling are discussed. In addition, with respect to progress of discharge coefficient is presented. In the last, the future development trend and future investigation direction of film cooling are prospected.


2012 ◽  
Vol 174-177 ◽  
pp. 263-267
Author(s):  
Ming Li ◽  
Zhe Zhe Sun ◽  
Wei Jian Zhao ◽  
Yong Liu

The development of new generation prefabricated reinforced concrete structure is still at an early stage in China. Reinforced concrete laminated slab, as an important horizontal load carrying member, is paid much attention to in research. Based on the research results about it in China, the progress of which is summarized, including the form, characteristics and experimental research of sandwich laminated slab, anti-ribbed laminated slab, and hollow laminated slab etc. Finally, the further research is prospected.


Proceedings ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 49 ◽  
Author(s):  
Carsten Jaeschke ◽  
Oriol Gonzalez ◽  
Marta Padilla ◽  
Kaylen Richardson ◽  
Johannes Glöckler ◽  
...  

In this work, a new generation of gas sensing systems specially designed for breath analysis is presented. The developed system comprises a compact modular, low volume, temperature-controlled sensing chamber with three compartments that can host different sensor types. In the presented system, one compartment contains an array of 8 analog MOX sensors and the other two 10 digital MOX sensors each. Here, we test the system for the detection of low concentrations of several compounds.


Author(s):  
Hailong Jing ◽  
Haitao Yang ◽  
Xiaohua Yu ◽  
Chaoquan Hu ◽  
Rongxing Li ◽  
...  

The research progress of electrochemical treatment of organic matter and ammonia nitrogen in wastewater is reviewed in this work. Pt/Ti, RuxIryOz/Ti, IrO2-Ta2O5/Ti, PbO2/Ti, TinO2n-1, SnO2-Sb/Ti, boron-doped diamond, graphite, and particle...


mBio ◽  
2017 ◽  
Vol 8 (2) ◽  
Author(s):  
Omar M. El-Halfawy ◽  
Javier Klett ◽  
Rebecca J. Ingram ◽  
Slade A. Loutet ◽  
Michael E. P. Murphy ◽  
...  

ABSTRACT The potential for microbes to overcome antibiotics of different classes before they reach bacterial cells is largely unexplored. Here we show that a soluble bacterial lipocalin produced by Burkholderia cenocepacia upon exposure to sublethal antibiotic concentrations increases resistance to diverse antibiotics in vitro and in vivo. These phenotypes were recapitulated by heterologous expression in B. cenocepacia of lipocalin genes from Pseudomonas aeruginosa, Mycobacterium tuberculosis, and methicillin-resistant Staphylococcus aureus. Purified lipocalin bound different classes of bactericidal antibiotics and contributed to bacterial survival in vivo. Experimental and X-ray crystal structure-guided computational studies revealed that lipocalins counteract antibiotic action by capturing antibiotics in the extracellular space. We also demonstrated that fat-soluble vitamins prevent antibiotic capture by binding bacterial lipocalin with higher affinity than antibiotics. Therefore, bacterial lipocalins contribute to antimicrobial resistance by capturing diverse antibiotics in the extracellular space at the site of infection, which can be counteracted by known vitamins. IMPORTANCE Current research on antibiotic action and resistance focuses on targeting essential functions within bacterial cells. We discovered a previously unrecognized mode of general bacterial antibiotic resistance operating in the extracellular space, which depends on bacterial protein molecules called lipocalins. These molecules are highly conserved in most bacteria and have the ability to capture different classes of antibiotics outside bacterial cells. We also discovered that liposoluble vitamins, such as vitamin E, overcome in vitro and in vivo antibiotic resistance mediated by bacterial lipocalins, providing an unexpected new alternative to combat resistance by using this vitamin or its derivatives as antibiotic adjuvants. IMPORTANCE Current research on antibiotic action and resistance focuses on targeting essential functions within bacterial cells. We discovered a previously unrecognized mode of general bacterial antibiotic resistance operating in the extracellular space, which depends on bacterial protein molecules called lipocalins. These molecules are highly conserved in most bacteria and have the ability to capture different classes of antibiotics outside bacterial cells. We also discovered that liposoluble vitamins, such as vitamin E, overcome in vitro and in vivo antibiotic resistance mediated by bacterial lipocalins, providing an unexpected new alternative to combat resistance by using this vitamin or its derivatives as antibiotic adjuvants.


2021 ◽  
Vol 28 ◽  
Author(s):  
Zhen Li ◽  
Fang Liu ◽  
Shuang Wu ◽  
Shi Ding ◽  
Ye Chen ◽  
...  

Background: The fusion and rearrangement of the ALK gene of anaplastic lymphoma kinase is an important cause of a variety of cancers, including non-small cell lung cancer (NSCLC) and anaplastic large cell lymphoma (ALCL). Since crizotinib first came out, many ALK inhibitors have come out one after another, but the fatal flaw in each generation of ALK inhibitors is the body's resistance to drugs. Therefore, how to solve the problem of drug resistance has become an important bottleneck in the application and development of ALK inhibitors. This article briefly introduces the drug resistance of ALK inhibitors and the modified forms of ALK inhibitors, which provide a theoretical basis for solving the drug resistance of ALK inhibitors and the development of a new generation of ALK kinase inhibitors. Method: We use relevant databases to query relevant literature, and then screen and select based on the relevance and cutting edge of the content. We then summarize and analyze appropriate articles, integrate and classify relevant studies, and finally write articles based on topics. Result: This article starts with the problem of ALK resistance, first introduces the composition of ALK kinase, and then introduces the problem of resistance of ALK kinase inhibitors. Later, the structural modification to overcome ALK resistance was introduced, and finally, the method to overcome ALK resistance was introduced. Conclusion: This article summarizes the resistance pathways of ALK kinase inhibitors, and integrates the efforts made to overcome the structural modification of ALK resistance problems, and hopes to provide some inspiration for the development of the next generation of ALK kinase inhibitors.


RSC Advances ◽  
2015 ◽  
Vol 5 (127) ◽  
pp. 105363-105371 ◽  
Author(s):  
Manas Sarkar ◽  
Dibyendu Adak ◽  
Abiral Tamang ◽  
Brajadulal Chattopadhyay ◽  
Saroj Mandal

Genetically modified spore formingB. subtilisbacterial cells for eco-friendly sustainable self-healing bio-concrete.


2019 ◽  
Vol 374 (1767) ◽  
pp. 20180311 ◽  
Author(s):  
Fang-Fang Wang ◽  
Wei Qian

It has long been known that phytopathogenic bacteria react to plant-specific stimuli or environmental factors. However, how bacterial cells sense these environmental cues remains incompletely studied. Recently, three kinds of histidine kinases (HKs) were identified as receptors to perceive plant-associated or quorum-sensing signals. Among these kinases, HK VgrS detects iron depletion by binding to ferric iron via an ExxE motif, RpfC binds diffusible signal factor (DSF) by its N-terminal peptide and activates its autokinase activity through relaxation of autoinhibition, and PcrK specifically senses plant hormone–cytokinin and elicits bacterial responses to oxidative stress. These HKs are critical sensors that regulate the virulence of a Gram-negative bacterium, Xanthomonas campestris pv. campestris . Research progress on the signal perception of phytopathogenic bacterial HKs suggests that inter-kingdom signalling between host plants and pathogens controls pathogenesis and can be used as a potential molecular target to protect plants from bacterial diseases. This article is part of the theme issue ‘Biotic signalling sheds light on smart pest management’.


mBio ◽  
2012 ◽  
Vol 3 (3) ◽  
Author(s):  
Amy T. Y. Yeung ◽  
Alicia Parayno ◽  
Robert E. W. Hancock

ABSTRACTAn important environmental factor that determines the mode of motility adopted byPseudomonas aeruginosais the viscosity of the medium, often provided by adjusting agar concentrationsin vitro. However, the viscous gel-like property of the mucus layer that overlays epithelial surfaces is largely due to the glycoprotein mucin.P. aeruginosais known to swim within 0.3% (wt/vol) agar and swarm on the surface at 0.5% (wt/vol) agar with amino acids as a weak nitrogen source. When physiological concentrations or as little as 0.05% (wt/vol) mucin was added to the swimming agar, in addition to swimming,P. aeruginosawas observed to undergo highly accelerated motility on the surface of the agar. The surface motility colonies in the presence of mucin appeared to be circular, with a bright green center surrounded by a thicker white edge. While intact flagella were required for the surface motility in the presence of mucin, type IV pili and rhamnolipid production were not. Replacement of mucin with other wetting agents indicated that the lubricant properties of mucin might contribute to the surface motility. Based on studies with mutants, the quorum-sensing systems (lasandrhl) and the orphan autoinducer receptor QscR played important roles in this form of surface motility. Transcriptional analysis of cells taken from the motility zone revealed the upregulation of genes involved in virulence and resistance. Based on these results, we suggest that mucin may be promoting a new or highly modified form of surface motility, which we propose should be termed “surfing.”IMPORTANCEAn important factor that dictates the mode of motility adopted byP. aeruginosais the viscosity of the medium, often provided by adjusting agar concentrationsin vitro. However, the gel-like properties of the mucous layers that overlay epithelial surfaces, such as those of the lung, a major site ofPseudomonasinfection, are contributed mostly by the production of the glycoprotein mucin. In this study, we added mucin to swimming media and found that it promoted the ability ofP. aeruginosato exhibit rapid surface motility. These motility colonies appeared in a circular form, with a bright green center surrounded by a thicker white edge. Interestingly, bacterial cells at the thick edge appeared piled up and lacked flagella, while cells at the motility center had flagella. Our data from various genetic and phenotypic studies suggest that mucin may be promoting a modified form of swarming or a novel form of surface motility inP. aeruginosa.


Sign in / Sign up

Export Citation Format

Share Document