scholarly journals Cell Density Detector Based on Light Beam Focusing

Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 592 ◽  
Author(s):  
Aoqun Jian ◽  
Huiming Li ◽  
Yixia Zhang ◽  
Qianqian Duan ◽  
Qianwu Zhang ◽  
...  

Although the lab-on-a-chip system has been successfully applied in a wide variety of fields, the goal of achieving a cell counter with simple operation, low cost, and high accuracy still attracts continuous research efforts. In this paper, the authors explore a cell counter based on light beam focusing to measure the density of adherent cells. In this sensor, the light emitted from the optical fibers is collimated by the collimating lens formed in polydimethylsiloxane (PDMS). The uniformly attached adherent cells act as a convex lens, focusing the collimated light propagated through them. The intensity of the focused light indicates the density of the adherent cells. For Hela cells, a detection limit of 8.3 × 104 cells/mL with a detection range from 0.1 × 106 cells/mL to 1.0 × 106 cells/mL is achieved. This sensor is particularly useful for drug screening, cell pathology analysis, and cancer pre-diagnosis.

2021 ◽  
Vol 2127 (1) ◽  
pp. 012037
Author(s):  
V M Epikhin ◽  
M M Mazur ◽  
A V Ryabinin ◽  
P V Kamaushkin ◽  
L I Mazur

Abstract Acousto-optic modulators/frequency shifters based on TeO2 crystals with single-mode optical fibers supporting and not supporting polarization for collimated and focused light beams at radiation wavelengths of 785, 1064, 1550 nm have been developed, produced and experimentally investigated. The mechanisms of formation and methods of expanding the working band of the modulator are determined. A double-crystal acousto-optic laser emission frequency shifter with an working bandwidth of ≈40 MHz has been created. Single-crystal modulators based on collimated beams with a frequency band of ≈10 MHz are considered. A single-crystal modulator with a focused light beam with a switching time of ≈ 18 ns and an extended reception band of ≈ 40 MHz is investigated. It is shown that a light beam focusing makes it possible to implement a modulator with a minimum switching time of ≈ (2-3) ns. This value is limited by electrical breakdown of the ultrasonic wave transmitter.


2012 ◽  
Vol 571 ◽  
pp. 261-264
Author(s):  
Qi Yan ◽  
Hai Jiao Yu ◽  
Feng Jun Tian ◽  
Wei Min Sun

We demonstrate a 5 port photonic lantern for light beam combining. This is a potential key component for low-cost wideband light source. The photonic lantern is a fused-taper fiber device with 5 energy delivery optical fibers into a multi-mode fiber. The input fibers have Ge-doped core diameter of 110μm and the output multimode fiber has a core diameter of 30μm. In the tapered section light in different fibers couples with each other and the multimode fiber terminal output all wavelengths of the light from 5 LED sources which be used to test the device. Different broadband sources can be obtained by using photonic lantern and different combination of LED sources. This paper shows the feasibility of using the photonic lantern to obtain wide-band light source by narrow bandwidth light sources.


2021 ◽  
pp. 088391152199784
Author(s):  
Nipun Jain ◽  
Shashi Singh

Development of an artificial tissue by tissue engineering is witnessed to be one of the long lasting clarified solutions for the damaged tissue function restoration. To accomplish this, a scaffold is designed as a cell carrier in which the extracellular matrix (ECM) performs a prominent task of controlling the inoculated cell’s destiny. ECM composition, topography and mechanical properties lead to different types of interactions between cells and ECM components that trigger an assortment of cellular reactions via diverse sensing mechanisms and downstream signaling pathways. The polysaccharides in the form of proteoglycans and glycoproteins yield better outcomes when included in the designed matrices. Glycosaminoglycan (GAG) chains present on proteoglycans show a wide range of operations such as sequestering of critical effector morphogens which encourage proficient nutrient contribution toward the growing stem cells for their development and endurance. In this review we discuss how the glycosylation aspects are of considerable importance in everyday housekeeping functions of a cell especially when placed in a controlled environment under ideal growth conditions. Hydrogels made from these GAG chains have been used extensively as a resorbable material that mimics the natural ECM functions for an efficient control over cell attachment, permeability, viability, proliferation, and differentiation processes. Also the incorporation of non-mammalian polysaccharides can elicit specific receptor responses which authorize the creation of numerous vigorous frameworks while prolonging the low cost and immunogenicity of the substance.


2016 ◽  
Vol 16 (15) ◽  
pp. 5950-5957 ◽  
Author(s):  
Dipankar Chetia ◽  
Tenison Basumatary ◽  
Hidam Kumarjit Singh ◽  
Tulshi Bezboruah
Keyword(s):  

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3244
Author(s):  
Jiuzhou Zhao ◽  
Zhenjun Li ◽  
Matthew Thomas Cole ◽  
Aiwei Wang ◽  
Xiangdong Guo ◽  
...  

The nanocone-shaped carbon nanotubes field-emitter array (NCNA) is a near-ideal field-emitter array that combines the advantages of geometry and material. In contrast to previous methods of field-emitter array, laser ablation is a low-cost and clean method that does not require any photolithography or wet chemistry. However, nanocone shapes are hard to achieve through laser ablation due to the micrometer-scale focusing spot. Here, we develop an ultraviolet (UV) laser beam patterning technique that is capable of reliably realizing NCNA with a cone-tip radius of ≈300 nm, utilizing optimized beam focusing and unique carbon nanotube–light interaction properties. The patterned array provided smaller turn-on fields (reduced from 2.6 to 1.6 V/μm) in emitters and supported a higher (increased from 10 to 140 mA/cm2) and more stable emission than their unpatterned counterparts. The present technique may be widely applied in the fabrication of high-performance CNTs field-emitter arrays.


2015 ◽  
Author(s):  
R. Rojas-Laguna ◽  
J. C. Hernandez-Garcia ◽  
J. M. Estudillo-Ayala ◽  
B. Ibarra-Escamilla ◽  
O. Pottiez ◽  
...  

BMC Medicine ◽  
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Marina S. Perez-Plazola ◽  
Erika A. Tyburski ◽  
Luke R. Smart ◽  
Thad A. Howard ◽  
Amanda Pfeiffer ◽  
...  

Abstract Background Severe anemia is common and frequently fatal for hospitalized patients in limited-resource settings. Lack of access to low-cost, accurate, and rapid diagnosis of anemia impedes the delivery of life-saving care and appropriate use of the limited blood supply. The WHO Haemoglobin Colour Scale (HCS) is a simple low-cost test but frequently inaccurate. AnemoCheck-LRS (limited-resource settings) is a rapid, inexpensive, color-based point-of-care (POC) test optimized to diagnose severe anemia. Methods Deidentified whole blood samples were diluted with plasma to create variable hemoglobin (Hb) concentrations, with most in the severe (≤ 7 g/dL) or profound (≤ 5 g/dL) anemia range. Each sample was tested with AnemoCheck-LRS and WHO HCS independently by three readers and compared to Hb measured by an electronic POC test (HemoCue 201+) and commercial hematology analyzer. Results For 570 evaluations within the limits of detection of AnemoCheck-LRS (Hb ≤ 8 g/dL), the average difference between AnemoCheck-LRS and measured Hb was 0.5 ± 0.4 g/dL. In contrast, the WHO HCS overestimated Hb with an absolute difference of 4.9 ± 1.3 g/dL for samples within its detection range (Hb 4–14 g/dL, n = 405). AnemoCheck-LRS was much more sensitive (92%) for the diagnosis of profound anemia than WHO HCS (22%). Conclusions AnemoCheck-LRS is a rapid, inexpensive, and accurate POC test for anemia. AnemoCheck-LRS is more accurate than WHO HCS for detection of low Hb levels, severe anemia that may require blood transfusion. AnemoCheck-LRS should be tested prospectively in limited-resource settings where severe anemia is common, to determine its utility as a screening tool to identify patients who may require transfusion.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2776
Author(s):  
José A. Borda-Hernández ◽  
Claudia M. Serpa-Imbett ◽  
Hugo E. Hernandez Figueroa

This research introduces a numerical design of an air-core vortex polymer optical fiber in cyclic transparent optical polymer (CYTOP) that propagates 32 orbital angular momentum (OAM) modes, i.e., it may support up to 64 stable OAM-states considering left- and right-handed circular polarizations. This fiber seeks to be an alternative to increase the capacity of short-range optical communication systems multiplexed by modes, in agreement with the high demand of low-cost, insensitive-to-bending and easy-to-handle fibers similar to others optical fibers fabricated in polymers. This novel fiber possesses unique characteristics: a diameter of 50 µm that would allow a high mechanical compatibility with commercially available polymer optical fibers, a difference of effective index between neighbor OAM modes of around 10−4 over a bandwidth from 1 to 1.6 µm, propagation losses of approximately 15 × 10−3 dB/m for all OAM modes, and a very low dispersion for OAM higher order modes (±l = 16) of up to +2.5 ps/km-nm compared with OAM lower order modes at a telecom wavelength of 1.3 µm, in which the CYTOP exhibits a minimal attenuation. The spectra of mutual coupling coefficients between modes are computed considering small bends of up to 3 cm of radius and slight ellipticity in the ring of up to 5%. Results show lower-charge weights for higher order OAM modes.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Bin You ◽  
Bo Yang ◽  
Xuan Wen ◽  
Liangyu Qu

A new ultrahigh frequency radio frequency identification (UHF RFID) reader’s front-end circuit which is based on zero-IF, single antenna structure and composed of discrete components has been designed. The proposed design brings a significant improvement of the reading performance by adopting a carrier leakage suppression (CLS) circuit instead of a circulator which is utilized by most of the conventional RF front-end circuit. Experimental results show that the proposed design improves both the sensitivity and detection range compared to the conventional designs.


Sign in / Sign up

Export Citation Format

Share Document