scholarly journals Role of Solid Wall Properties in the Interface Slip of Liquid in Nanochannels

Micromachines ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 663 ◽  
Author(s):  
Wei Gao ◽  
Xuan Zhang ◽  
Xiaotian Han ◽  
Chaoqun Shen

A two-dimensional molecular dynamics model of the liquid flow inside rough nanochannels is developed to investigate the effect of a solid wall on the interface slip of liquid in nanochannels with a surface roughness constructed by rectangular protrusions. The liquid structure, velocity profile, and confined scale on the boundary slip in a rough nanochannel are investigated, and the comparison of those with a smooth nanochannel are presented. The influence of solid wall properties, including the solid wall density, wall-fluid coupling strength, roughness height and spacing, on the interfacial velocity slip are all analyzed and discussed. It is indicated that the rough surface induces a smaller magnitude of the density oscillations and extra energy losses compared with the smooth solid surface, which reduce the interfacial slip of liquid in a nanochannel. In addition, once the roughness spacing is very small, the near-surface liquid flow dominates the momentum transfer at the interface between liquid and solid wall, causing the role of both the corrugation of wall potential and wall-fluid coupling strength to be less obvious. In particular, the slip length increases with increasing confined scales and shows no dependence on the confined scale once the confined scale reaches a critical value. The critical confined scale for the rough channel is larger than that of the smooth scale.

2014 ◽  
Vol 5 ◽  
pp. 1042-1065 ◽  
Author(s):  
Yunlu Pan ◽  
Bharat Bhushan ◽  
Xuezeng Zhao

The drag of fluid flow at the solid–liquid interface in the micro/nanoscale is an important issue in micro/nanofluidic systems. Drag depends on the surface wetting, nanobubbles, surface charge and boundary slip. Some researchers have focused on the relationship between these interface properties. In this review, the influence of an applied voltage on the surface wettability, nanobubbles, surface charge density and slip length are discussed. The contact angle (CA) and contact angle hysteresis (CAH) of a droplet of deionized (DI) water on a hydrophobic polystyrene (PS) surface were measured with applied direct current (DC) and alternating current (AC) voltages. The nanobubbles in DI water and three kinds of saline solution on a PS surface were imaged when a voltage was applied. The influence of the surface charge density on the nanobubbles was analyzed. Then the slip length and the electrostatic force on the probe were measured on an octadecyltrichlorosilane (OTS) surface with applied voltage. The influence of the surface charge on the boundary slip and drag of fluid flow has been discussed. Finally, the influence of the applied voltage on the surface wetting, nanobubbles, surface charge, boundary slip and the drag of liquid flow are summarized. With a smaller surface charge density which could be achieved by applying a voltage on the surface, larger and fewer nanobubbles, a larger slip length and a smaller drag of liquid flow could be found.


Author(s):  
Min Chen ◽  
Bing-Yang Cao ◽  
Zeng-Yuan Guo

Understanding the effects of surface nanostructures on fluid flow in micro- and nano-channels is highly desirable for micro/nano-electro-mechanical systems. By way of equilibrium and non-equilibrium molecular dynamics simulations, wetting on nano-structured surfaces and liquid flow in nano-channels with structured surfaces are simulated. The surfaces show dual effects on the boundary slip and friction of the liquid flow in nano-channels. Generally, the nanostructures enhance the surface hydrophilicity for a hydrophilic liquid-solid interaction, and increase the hydrophobicity for a hydrophobic interaction. Simultaneously, the nanostructures distort the nanoscale streamlines of the liquid flow near the channel surface and block the flow, which decreases the apparent slip length. The twofold effects of the nanostructures on the surface wettability and the hydrodynamic disturbance result in a non-monotonic dependence of the slip length on the structure’s size. However, the surface structure may lead to a very high contact angle of about 170° in some cases, which cause the surface show super-hydrophobicity and lead to a remarkable velocity slip. The surface nanostructures can thus be applied to control the friction of micro- and nano-flows. In addition, the gaseous flows in micro- and nano-channels with structured surfaces are simulated. The geometry of the surface is modeled by triangular, rectangular, sinusoidal and randomly triangular nanostructures respectively. The results show that the velocity slips, including negative slip, depend not only on the Knudsen number but also the surface structure. The impacts of the surface nanostructure and the gas rarefaction are strongly coupled. In general, the slip length of a gaseous flow over a structured surface is less than what predicted by the Maxwell model, and depends not only on the Knudsen number but also the size of the surface nanostructures.


1983 ◽  
Vol 23 ◽  
Author(s):  
G.J. Galvin ◽  
L.S. Hung ◽  
J.W. Mayer ◽  
M. Nastasi

ABSTRACTEnergetic ion beams used outside the traditional role of ion implantation are considered for semiconductor applications involving interface modification for self-aligned silicide contacts, composition modification for formation of buried oxide layers in Si on insulator structures and reduced disorder in high energy ion beam annealing for buried collectors in transistor fabrication. In metals, aside from their use in modification of the composition of near surface regions, energetic ion beams are being investigated for structural modification in crystalline to amorphous transitions. Pulsed beams of photons and electrons are used as directed energy sources in rapid solidification. Here, we consider the role of temperature gradients and impurities in epitaxial growth of silicon.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jennifer A. MacKinnon ◽  
Harper L. Simmons ◽  
John Hargrove ◽  
Jim Thomson ◽  
Thomas Peacock ◽  
...  

AbstractUnprecedented quantities of heat are entering the Pacific sector of the Arctic Ocean through Bering Strait, particularly during summer months. Though some heat is lost to the atmosphere during autumn cooling, a significant fraction of the incoming warm, salty water subducts (dives beneath) below a cooler fresher layer of near-surface water, subsequently extending hundreds of kilometers into the Beaufort Gyre. Upward turbulent mixing of these sub-surface pockets of heat is likely accelerating sea ice melt in the region. This Pacific-origin water brings both heat and unique biogeochemical properties, contributing to a changing Arctic ecosystem. However, our ability to understand or forecast the role of this incoming water mass has been hampered by lack of understanding of the physical processes controlling subduction and evolution of this this warm water. Crucially, the processes seen here occur at small horizontal scales not resolved by regional forecast models or climate simulations; new parameterizations must be developed that accurately represent the physics. Here we present novel high resolution observations showing the detailed process of subduction and initial evolution of warm Pacific-origin water in the southern Beaufort Gyre.


2019 ◽  
Vol 867 ◽  
pp. 949-968 ◽  
Author(s):  
Sondes Khabthani ◽  
Antoine Sellier ◽  
François Feuillebois

Near-contact hydrodynamic interactions between a solid sphere and a plane porous slab are investigated in the framework of lubrication theory. The size of pores in the slab is small compared with the slab thickness so that the Darcy law holds there. The slab is thin: that is, its thickness is small compared with the sphere radius. The considered problem involves a sphere translating above the slab together with a permeation flow across the slab and a uniform pressure below. The pressure is continuous across both slab interfaces and the Saffman slip condition applies on its upper interface. An extended Reynolds-like equation is derived for the pressure in the gap between the sphere and the slab. This equation is solved numerically and the drag force on the sphere is calculated therefrom for a wide range of values of the slab interface slip length and of the permeability parameter $\unicode[STIX]{x1D6FD}=24k^{\ast }R/(e\unicode[STIX]{x1D6FF}^{2})$, where $k^{\ast }$ is the permeability, $e$ is the porous slab thickness, $R$ is the sphere radius and $\unicode[STIX]{x1D6FF}$ is the gap. Moreover, asymptotics expansions for the pressure and drag are derived for high and low $\unicode[STIX]{x1D6FD}$. These expansions, which agree with the numerics, are also handy formulae for practical use. All results match with those of other authors in particular cases. The settling trajectory of a sphere towards a porous slab in a fluid at rest is calculated from these results and, as expected, the time for reaching the slab decays for increasing slab permeability and upper interface slip length.


1993 ◽  
Vol 115 (3) ◽  
pp. 314-318 ◽  
Author(s):  
S. M. Spearing ◽  
F. W. Zok

A computer simulation of multiple cracking in fiber-reinforced brittle matrix composites has been conducted, with emphasis on the role of the matrix flaw distribution. The simulations incorporate the effect of bridging fibers on the stress required for cracking. Both short and long (steady-state) flaws are considered. Furthermore, the effects of crack interactions (through the overlap of interface slip lengths) are incorporated. The influence of the crack distribution on the tensile response of such composites is also examined.


2001 ◽  
Vol 37 (4) ◽  
pp. 2411-2413 ◽  
Author(s):  
You Xu ◽  
Jiehui Yang ◽  
Xijuan Zhang ◽  
Fang Zhang ◽  
M. Guillot

Author(s):  
Terence J. Pagano ◽  
Duane E. Waliser ◽  
Bin Guan ◽  
Hengchun Ye ◽  
F. Martin Ralph ◽  
...  

AbstractAtmospheric rivers (ARs) are long and narrow regions of strong horizontal water vapor transport. Upon landfall, ARs are typically associated with heavy precipitation and strong surface winds. A quantitative understanding of the atmospheric conditions that favor extreme surface winds during ARs has implications for anticipating and managing various impacts associated with these potentially hazardous events. Here, a global AR database (1999–2014) with relevant information from MERRA-2 reanalysis, QuikSCAT and AIRS satellite observations are used to better understand and quantify the role of near-surface static stability in modulating surface winds during landfalling ARs. The temperature difference between the surface and 1 km MSL (ΔT; used here as a proxy for near-surface static stability), and integrated water vapor transport (IVT) are analyzed to quantify their relationships to surface winds using bivariate linear regression. In four regions where AR landfalls are common, the MERRA-2-based results indicate that IVT accounts for 22-38% of the variance in surface wind speed. Combining ΔT with IVT increases the explained variance to 36-52%. Substitution of QuikSCAT surface winds and AIRS ΔT in place of the MERRA-2 data largely preserves this relationship (e.g., 44% compared to 52% explained variance for USA West Coast). Use of an alternate static stability measure–the bulk Richardson number–yields a similar explained variance (47%). Lastly, AR cases within the top and bottom 25% of near-surface static stability indicate that extreme surface winds (gale or higher) are more likely to occur in unstable conditions (5.3%/14.7% during weak/strong IVT) than in stable conditions (0.58%/6.15%).


2021 ◽  
Author(s):  
Tomas Jonathan ◽  
Mike Bell ◽  
Helen Johnson ◽  
David Marshall

<p>The Atlantic Meridional Overturning Circulations (AMOC) is crucial to our global climate, transporting heat and nutrients around the globe. Detecting  potential climate change signals first requires a careful characterisation of inherent natural AMOC variability. Using a hierarchy of global coupled model  control runs (HadGEM-GC3.1, HighResMIP) we decompose the overturning circulation as the sum of (near surface) Ekman, (depth-dependent) bottom velocity, eastern and western boundary density components, as a function of latitude. This decomposition proves a useful low-dimensional characterisation of the full 3-D overturning circulation. In particular, the decomposition provides a means to investigate and quantify the constraints which boundary information imposes on the overturning, and the relative role of eastern versus western contributions on different timescales. </p><p>The basin-wide time-mean contribution of each boundary component to the expected streamfunction is investigated as a function of depth, latitude and spatial resolution. Regression modelling supplemented by Correlation Adjusted coRrelation (CAR) score diagnostics provide a natural ranking of the contributions of the various components in explaining the variability of the total streamfunction. Results reveal the dominant role of the bottom component, western boundary and Ekman components at short time-scales, and of boundary density components at decadal and longer timescales.</p>


Sign in / Sign up

Export Citation Format

Share Document